Home
Class 12
MATHS
Let g (x ) = x ^(C )e ^(Cx) and f (x) = ...

Let `g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt.` If `L = lim _(x to oo) (f'(x ))/(g '(x))` is non-zero finite number then :
The value of L . Is :

A

`2/7`

B

`1/2`

C

`(sqrt3)/(4)`

D

`(sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit \( L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} \) where \( g(x) = x^c e^{Cx} \) and \( f(x) = \int_0^x t e^{2t} \sqrt{1 + 3t^2} \, dt \). ### Step 1: Differentiate \( g(x) \) Given: \[ g(x) = x^c e^{Cx} \] Using the product rule: \[ g'(x) = \frac{d}{dx}(x^c) \cdot e^{Cx} + x^c \cdot \frac{d}{dx}(e^{Cx}) \] Calculating the derivatives: \[ g'(x) = c x^{c-1} e^{Cx} + x^c \cdot C e^{Cx} \] Factoring out \( e^{Cx} \): \[ g'(x) = e^{Cx} \left( c x^{c-1} + C x^c \right) \] ### Step 2: Differentiate \( f(x) \) Using the Fundamental Theorem of Calculus: \[ f'(x) = x e^{2x} \sqrt{1 + 3x^2} \] ### Step 3: Set Up the Limit Now we can substitute \( f'(x) \) and \( g'(x) \) into the limit: \[ L = \lim_{x \to \infty} \frac{x e^{2x} \sqrt{1 + 3x^2}}{e^{Cx} (c x^{c-1} + C x^c)} \] ### Step 4: Simplify the Limit We can simplify the limit: \[ L = \lim_{x \to \infty} \frac{x e^{2x} \sqrt{1 + 3x^2}}{e^{Cx}} \cdot \frac{1}{c x^{c-1} + C x^c} \] This becomes: \[ L = \lim_{x \to \infty} \frac{x \sqrt{1 + 3x^2}}{c x^{c-1} + C x^c} e^{(2-C)x} \] ### Step 5: Analyze the Exponential Term For \( L \) to be a non-zero finite number, the exponent \( 2 - C \) must equal zero: \[ 2 - C = 0 \implies C = 2 \] ### Step 6: Substitute \( C = 2 \) into the Limit Substituting \( C = 2 \): \[ L = \lim_{x \to \infty} \frac{x \sqrt{1 + 3x^2}}{c x^{c-1} + 2 x^c} \] As \( x \to \infty \), the dominant term in the denominator is \( 2x^c \): \[ L = \lim_{x \to \infty} \frac{x \sqrt{1 + 3x^2}}{2 x^c} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{\sqrt{1 + 3x^2}}{2 x^{c-1}} = \frac{\sqrt{3}}{2} \text{ if } c = 2 \] ### Final Result Thus, the value of \( L \) is: \[ L = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The valur of C is:

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval