Home
Class 12
MATHS
If int (dx )/(cos ^(3) x-sin ^(3))=A tan...

If `int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f (x))/(sqrt2-f (x))|+C` where `f (x) = sin x + cos x` find the value of `(12A+9sqrt2V)-3.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos^3 x - \sin^3 x} \] we can use the identity for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + b^2 + ab) \] In our case, let \( a = \cos x \) and \( b = \sin x \). Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{(\cos x - \sin x)(\cos^2 x + \sin^2 x + \cos x \sin x)} \] Using the Pythagorean identity \( \cos^2 x + \sin^2 x = 1 \), we simplify the expression to: \[ I = \int \frac{dx}{(\cos x - \sin x)(1 + \cos x \sin x)} \] Next, we multiply the numerator and denominator by \( \cos x \sin x \): \[ I = \int \frac{\cos x \sin x \, dx}{(\cos x - \sin x)(\cos x \sin x + \cos^2 x \sin^2 x)} \] Now, we can rewrite the denominator using the identity: \[ (\cos x - \sin x)^2 = \cos^2 x + \sin^2 x - 2\cos x \sin x = 1 - 2\cos x \sin x \] Thus, we have: \[ I = \int \frac{2(\cos x - \sin x) \, dx}{(1 - 2\cos x \sin x)(1 + \cos x \sin x)} \] Now, we will substitute \( f(x) = \sin x + \cos x \). Hence, we differentiate \( f(x) \): \[ f'(x) = \cos x - \sin x \] This gives us: \[ dx = \frac{df}{\cos x - \sin x} \] Substituting this back into the integral, we have: \[ I = \int \frac{2 \, df}{(1 - 2\cos x \sin x)(1 + \cos x \sin x)} \] Next, we express \( 1 - 2\cos x \sin x \) and \( 1 + \cos x \sin x \) in terms of \( f(x) \): \[ \cos x \sin x = \frac{1}{2}(\sin(2x)) = \frac{1}{2}(f^2 - 1) \] Thus, we can rewrite the integral as: \[ I = \int \frac{2 \, df}{(1 - (f^2 - 1))(1 + \frac{1}{2}(f^2 - 1))} \] This simplifies to: \[ I = \int \frac{2 \, df}{(2 - f^2)(\frac{3}{2} + \frac{1}{2}f^2)} \] Now, we can separate the integral into two parts and integrate: \[ I = \frac{2}{3} \tan^{-1}(f(x)) + \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} + f(x)}{\sqrt{2} - f(x)} \right| + C \] From the given equation \( I = A \tan^{-1}(f(x)) + B \ln \left| \frac{\sqrt{2} + f(x)}{\sqrt{2} - f(x)} \right| + C \), we can identify: \[ A = \frac{2}{3}, \quad B = \frac{1}{2\sqrt{2}} \] Now, we need to find the value of \( 12A + 9\sqrt{2}B - 3 \): Calculating \( 12A \): \[ 12A = 12 \cdot \frac{2}{3} = 8 \] Calculating \( 9\sqrt{2}B \): \[ 9\sqrt{2}B = 9\sqrt{2} \cdot \frac{1}{2\sqrt{2}} = \frac{9}{2} \] Now substituting these values into the expression: \[ 12A + 9\sqrt{2}B - 3 = 8 + \frac{9}{2} - 3 \] Converting \( 8 \) and \( -3 \) to halves: \[ = \frac{16}{2} + \frac{9}{2} - \frac{6}{2} = \frac{16 + 9 - 6}{2} = \frac{19}{2} \] Thus, the final answer is: \[ \frac{19}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)(sinx+cosx)+Bln(f(x))+C , then A is equal to

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

"I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

If int f(x) dx = 2 cos sqrt(x) + c , then f(x) =

If f(x)=sqrt(1-sin2x), then f'(x) equals

f(x)=sqrt(9-x^(2)) . find range of f(x).

If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

Draw the graph of f(x) = (sin x)/(sqrt(1 + tan^(2)x))- (cos x)/(sqrt(1 + cot^(2)x)) . Then find the range of f(x).

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  2. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  3. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  4. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  5. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  6. int( x^3)/(x^2-3)dx

    Text Solution

    |

  7. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  8. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  9. int( x^3)/(x^2-2)dx

    Text Solution

    |

  10. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  11. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  12. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  13. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  14. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  15. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  16. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  17. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  18. int sqrt (x^2+4) dx

    Text Solution

    |

  19. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  20. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |