Home
Class 12
MATHS
If M be the maximum value of 72 int (0) ...

If `M` be the maximum value of `72 int _(0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2))dx` for `y in [0,1],` then find `M/6`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value \( M \) of the function defined by the integral: \[ M = 72 \int_{0}^{y} \sqrt{x^4 + (y - y^2)^2} \, dx \] for \( y \) in the interval \([0, 1]\), and then find \( \frac{M}{6} \). ### Step 1: Define the function Let: \[ f(y) = 72 \int_{0}^{y} \sqrt{x^4 + (y - y^2)^2} \, dx \] ### Step 2: Differentiate \( f(y) \) To find the maximum value, we first differentiate \( f(y) \) with respect to \( y \): \[ f'(y) = 72 \cdot \sqrt{y^4 + (y - y^2)^2} \] (using the Fundamental Theorem of Calculus). ### Step 3: Set the derivative to zero To find critical points, we set \( f'(y) = 0 \): \[ \sqrt{y^4 + (y - y^2)^2} = 0 \] This implies: \[ y^4 + (y - y^2)^2 = 0 \] ### Step 4: Simplify the equation Expanding \( (y - y^2)^2 \): \[ (y - y^2)^2 = y^2 - 2y^3 + y^4 \] Thus, we have: \[ y^4 + y^2 - 2y^3 + y^4 = 0 \] which simplifies to: \[ 2y^4 - 2y^3 + y^2 = 0 \] Factoring out \( y^2 \): \[ y^2(2y^2 - 2y + 1) = 0 \] ### Step 5: Analyze the factors The factor \( y^2 = 0 \) gives \( y = 0 \). The quadratic \( 2y^2 - 2y + 1 = 0 \) has a discriminant: \[ (-2)^2 - 4 \cdot 2 \cdot 1 = 4 - 8 = -4 \] Since the discriminant is negative, \( 2y^2 - 2y + 1 \) has no real roots. Thus, \( f'(y) \) is always non-negative for \( y \in [0, 1] \), indicating that \( f(y) \) is an increasing function. ### Step 6: Evaluate \( f(y) \) at the endpoints Since \( f(y) \) is increasing, the maximum value occurs at the upper limit \( y = 1 \): \[ M = f(1) = 72 \int_{0}^{1} \sqrt{x^4 + (1 - 1^2)^2} \, dx \] This simplifies to: \[ M = 72 \int_{0}^{1} \sqrt{x^4 + 0} \, dx = 72 \int_{0}^{1} x^2 \, dx \] ### Step 7: Calculate the integral The integral \( \int_{0}^{1} x^2 \, dx \) is: \[ \int x^2 \, dx = \frac{x^3}{3} \Big|_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] Thus: \[ M = 72 \cdot \frac{1}{3} = 24 \] ### Step 8: Find \( \frac{M}{6} \) Finally, we compute: \[ \frac{M}{6} = \frac{24}{6} = 4 \] ### Final Answer \[ \frac{M}{6} = 4 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

if y^(2)(y^(2)-6)+x^(2)-8x+24=0 , then maximum value of sqrt(y^(4)+x^(2)) is

If x=int_0^y (dt)/sqrt(1+9t^2) and (d^2y)/(dx^2)=ay , then find a

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If x + y=4 and x >=0, y>= 0 find the maximum value of x^3y .

An equation of the curve satisfying x dy - y dx = sqrt(x^(2)-y^(2))dx and y(1) = 0 is

Find value of x and y: (5x-4y+8=0),(7x+6y-9=0)

Find value of x and y: (5x-4y+8=0),(7x+6y-9=0)

For real numbers x and y, let M be the maximum value of expression x^4y + x^3y + x^2 y + x y + xy^2 + xy^3 + xy^4 , subject to x + y = 3 . Find [M] where [.] = G.I.F.

If y ^(2)(y^(2) -6) + x ^(2) -8x +24 =0 and the minimum value of x ^(2) + y^(4) is m and maximum value is M, then find the value of M-2m.

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. int( x^3)/(x^2-3)dx

    Text Solution

    |

  4. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. int( x^3)/(x^2-2)dx

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  10. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. int sqrt (x^2+4) dx

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) int (-pi)^(pi) ((pi)/(2) -|x|) cos...

    Text Solution

    |