Home
Class 12
MATHS
The maximum value of int (-pi/2) ^((3pi)...

The maximum value of `int _(-pi/2) ^((3pi)/2) sin x. f (x) dx,` subject to the condition `|f (x)| le 5` is `M`, then `M/10` is equal to ______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the integral \[ M = \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \cdot f(x) \, dx \] subject to the condition \(|f(x)| \leq 5\). ### Step 1: Understand the bounds of \(f(x)\) Since \(|f(x)| \leq 5\), we know that: \[ -5 \leq f(x) \leq 5 \] This means that the maximum value of \(f(x)\) is 5 and the minimum value is -5. ### Step 2: Analyze the integral The integral can be split into two parts based on the behavior of \(\sin x\) over the interval \([- \frac{\pi}{2}, \frac{3\pi}{2}]\): 1. From \(-\frac{\pi}{2}\) to \(0\), \(\sin x\) is negative. 2. From \(0\) to \(\frac{\pi}{2}\), \(\sin x\) is positive. 3. From \(\frac{\pi}{2}\) to \(\frac{3\pi}{2}\), \(\sin x\) is negative again. ### Step 3: Set \(f(x)\) for maximum contribution To maximize the integral, we can choose: - \(f(x) = 5\) in the interval where \(\sin x\) is positive (from \(0\) to \(\frac{\pi}{2}\)). - \(f(x) = -5\) in the intervals where \(\sin x\) is negative (from \(-\frac{\pi}{2}\) to \(0\) and from \(\frac{\pi}{2}\) to \(\frac{3\pi}{2}\)). ### Step 4: Calculate the integral Now we can express \(M\) as: \[ M = \int_{-\frac{\pi}{2}}^{0} \sin x \cdot (-5) \, dx + \int_{0}^{\frac{\pi}{2}} \sin x \cdot 5 \, dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \cdot (-5) \, dx \] This simplifies to: \[ M = -5 \int_{-\frac{\pi}{2}}^{0} \sin x \, dx + 5 \int_{0}^{\frac{\pi}{2}} \sin x \, dx - 5 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \, dx \] ### Step 5: Evaluate each integral 1. **First Integral**: \[ \int_{-\frac{\pi}{2}}^{0} \sin x \, dx = [-\cos x]_{-\frac{\pi}{2}}^{0} = -\cos(0) + \cos\left(-\frac{\pi}{2}\right) = -1 + 0 = -1 \] Thus, \[ -5 \int_{-\frac{\pi}{2}}^{0} \sin x \, dx = -5(-1) = 5 \] 2. **Second Integral**: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] Thus, \[ 5 \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 5(1) = 5 \] 3. **Third Integral**: \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \, dx = [-\cos x]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = -\cos\left(\frac{3\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right) = 0 + 0 = 0 \] Thus, \[ -5 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin x \, dx = -5(0) = 0 \] ### Step 6: Combine results Now we can combine the results: \[ M = 5 + 5 + 0 = 10 \] ### Step 7: Find \(M/10\) Finally, we need to find \(M/10\): \[ \frac{M}{10} = \frac{10}{10} = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of int _(-pi//2) ^(2pi//2) sin x. f (x) dx, subject to the condition |f (x) le 5 is M, then M/10is equal to :

The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

int_(-pi //2)^(pi//2) sin |x|dx is equal to

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

Evaluate: int(sin2x)/(sin(x-pi/3)sin(x+pi/3))\ dx

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. int( x^3)/(x^2-3)dx

    Text Solution

    |

  4. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. int( x^3)/(x^2-2)dx

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  10. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. int sqrt (x^2+4) dx

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) int (-pi)^(pi) ((pi)/(2) -|x|) cos...

    Text Solution

    |