Home
Class 12
MATHS
If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(...

If `int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b),` where a and b are positive integers. Find the value of `(a+b).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} (3x^2 - 3x + 1) \cos(x^3 - 3x^2 + 4x - 2) \, dx \), we can use a property of definite integrals. The property states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = 2 \), so we can rewrite the integral as: \[ I = \int_{0}^{2} (3(2-x)^2 - 3(2-x) + 1) \cos((2-x)^3 - 3(2-x)^2 + 4(2-x) - 2) \, dx \] ### Step 1: Substitute \( x \) with \( 2 - x \) First, we will calculate the expression \( 3(2-x)^2 - 3(2-x) + 1 \): \[ 3(2-x)^2 = 3(4 - 4x + x^2) = 12 - 12x + 3x^2 \] \[ -3(2-x) = -6 + 3x \] \[ 1 = 1 \] Combining these, we have: \[ 3(2-x)^2 - 3(2-x) + 1 = (12 - 12x + 3x^2) + (-6 + 3x) + 1 = 3x^2 - 9x + 7 \] ### Step 2: Calculate the cosine term Next, we calculate the expression for the cosine term: \[ (2-x)^3 - 3(2-x)^2 + 4(2-x) - 2 \] Calculating each part: \[ (2-x)^3 = 8 - 12x + 6x^2 - x^3 \] \[ -3(2-x)^2 = -3(4 - 4x + x^2) = -12 + 12x - 3x^2 \] \[ 4(2-x) = 8 - 4x \] \[ -2 = -2 \] Combining these gives: \[ (8 - 12x + 6x^2 - x^3) + (-12 + 12x - 3x^2) + (8 - 4x) - 2 \] Simplifying this: \[ = 8 - 12 + 8 - 2 + (-x^3 + 6x^2 - 3x^2 - 4x + 12x) = -x^3 + 3x^2 + 0x + 2 \] Thus, the cosine term becomes: \[ \cos((2-x)^3 - 3(2-x)^2 + 4(2-x) - 2) = \cos(-x^3 + 3x^2 + 2) \] ### Step 3: Combine both results Now we can rewrite the integral \( I \): \[ I = \int_{0}^{2} (3x^2 - 3x + 1) \cos(x^3 - 3x^2 + 4x - 2) \, dx + \int_{0}^{2} (3x^2 - 9x + 7) \cos(-x^3 + 3x^2 + 2) \, dx \] ### Step 4: Add the two integrals Adding the two integrals, we have: \[ 2I = \int_{0}^{2} \left( (3x^2 - 3x + 1) + (3x^2 - 9x + 7) \right) \cos(x^3 - 3x^2 + 4x - 2) \, dx \] This simplifies to: \[ 2I = \int_{0}^{2} (6x^2 - 12x + 8) \cos(x^3 - 3x^2 + 4x - 2) \, dx \] ### Step 5: Factor out the constant Now we can factor out the 2: \[ I = \int_{0}^{2} (3x^2 - 6x + 4) \cos(x^3 - 3x^2 + 4x - 2) \, dx \] ### Step 6: Change of variable Let \( t = x^3 - 3x^2 + 4x - 2 \). Then \( dt = (3x^2 - 6x + 4) \, dx \). ### Step 7: Evaluate the integral The integral becomes: \[ I = \int_{t(0)}^{t(2)} \cos(t) \, dt \] Calculating the limits: At \( x = 0 \): \[ t(0) = 0^3 - 3(0)^2 + 4(0) - 2 = -2 \] At \( x = 2 \): \[ t(2) = 2^3 - 3(2)^2 + 4(2) - 2 = 8 - 12 + 8 - 2 = 2 \] Thus, \[ I = \int_{-2}^{2} \cos(t) \, dt = [\sin(t)]_{-2}^{2} = \sin(2) - \sin(-2) = 2\sin(2) \] ### Final Result From the problem statement, we have \( I = a \sin(b) \). Here, \( a = 2 \) and \( b = 2 \). Thus, \( a + b = 2 + 2 = 4 \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If sin(30^(@) + " arc " tan x) = 13/14 " and " 0 lt x lt 1" , the value of x is " (a sqrt3)/b , where a and b are positive integers with no common factors . Find the value of ((a+b)/2) .

Find int e^(2x) sin (3x + 1) dx

If int_(0)^(1)(ax+b)/(x^(2)+3x+2)dx=ln.(3)/(2) , then

If int _(0) ^(x) (x ^(3) cos ^(4) x sin ^(2)x)/(pi^(2) -3pix + 3x ^(2))dx = lamda int _( 0)^(pi//2)sin ^(2) x dx, then the value of lamda is:

Find int_0^1(4x^3+3x^2-2x+1)dx

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Evaluate: int _0^((pi)/(2)) (sin ^(2) x .cos ^(2) x )/((sin ^(3) x+ cos ^(3) x)^(2)) dx

Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7)x+5 le 0} If A subB, then the range of real number p in [a,b] where, a,b are integers. Find the value of (b-a).

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. int( x^3)/(x^2-3)dx

    Text Solution

    |

  4. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. int( x^3)/(x^2-2)dx

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  10. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. int sqrt (x^2+4) dx

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) int (-pi)^(pi) ((pi)/(2) -|x|) cos...

    Text Solution

    |