Home
Class 12
MATHS
For a positive integer n, let I (n) int ...

For a positive integer n, let `I _(n) int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx`
Find the value of `[I _(1) + I _(3) +I_(4)]` where [.] denotes greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \[ I_n = \int_{-\pi}^{\pi} \left( \frac{\pi}{2} - |x| \right) \cos(nx) \, dx \] for \( n = 1, 3, 4 \) and then find the value of \( \lfloor I_1 + I_3 + I_4 \rfloor \). ### Step 1: Determine the nature of the function \( f(x) = \frac{\pi}{2} - |x| \cos(nx) \) Since \( f(-x) = f(x) \), the function is even. Therefore, we can simplify the integral: \[ I_n = 2 \int_0^{\pi} \left( \frac{\pi}{2} - x \right) \cos(nx) \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I_n = 2 \left( \int_0^{\pi} \frac{\pi}{2} \cos(nx) \, dx - \int_0^{\pi} x \cos(nx) \, dx \right) \] ### Step 3: Evaluate the first integral The first integral is: \[ \int_0^{\pi} \frac{\pi}{2} \cos(nx) \, dx = \frac{\pi}{2} \left[ \frac{\sin(nx)}{n} \right]_0^{\pi} = \frac{\pi}{2} \cdot \frac{\sin(n\pi)}{n} = 0 \] since \( \sin(n\pi) = 0 \). ### Step 4: Evaluate the second integral using integration by parts For the second integral, we use integration by parts: Let \( u = x \) and \( dv = \cos(nx) \, dx \). Then, \( du = dx \) and \( v = \frac{\sin(nx)}{n} \). Using integration by parts: \[ \int x \cos(nx) \, dx = x \cdot \frac{\sin(nx)}{n} - \int \frac{\sin(nx)}{n} \, dx \] Calculating the second integral: \[ \int \sin(nx) \, dx = -\frac{\cos(nx)}{n} \] Thus, \[ \int x \cos(nx) \, dx = x \cdot \frac{\sin(nx)}{n} + \frac{\cos(nx)}{n^2} \] Evaluating from \( 0 \) to \( \pi \): \[ \left[ x \cdot \frac{\sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{\pi} = \left( \pi \cdot \frac{\sin(n\pi)}{n} + \frac{\cos(n\pi)}{n^2} \right) - \left( 0 + \frac{1}{n^2} \right) \] This simplifies to: \[ 0 + \frac{\cos(n\pi)}{n^2} - \frac{1}{n^2} = \frac{\cos(n\pi) - 1}{n^2} \] ### Step 5: Combine results for \( I_n \) Now substituting back into our expression for \( I_n \): \[ I_n = 2 \left( 0 - \left( \frac{\cos(n\pi) - 1}{n^2} \right) \right) = \frac{2(1 - \cos(n\pi))}{n^2} \] ### Step 6: Calculate \( I_1, I_3, I_4 \) 1. For \( n = 1 \): \[ I_1 = \frac{2(1 - \cos(\pi))}{1^2} = \frac{2(1 - (-1))}{1} = \frac{2 \cdot 2}{1} = 4 \] 2. For \( n = 3 \): \[ I_3 = \frac{2(1 - \cos(3\pi))}{3^2} = \frac{2(1 - (-1))}{9} = \frac{2 \cdot 2}{9} = \frac{4}{9} \] 3. For \( n = 4 \): \[ I_4 = \frac{2(1 - \cos(4\pi))}{4^2} = \frac{2(1 - 1)}{16} = 0 \] ### Step 7: Calculate \( I_1 + I_3 + I_4 \) Now we can find: \[ I_1 + I_3 + I_4 = 4 + \frac{4}{9} + 0 = 4 + \frac{4}{9} = \frac{36}{9} + \frac{4}{9} = \frac{40}{9} \] ### Step 8: Find the greatest integer function Finally, we need to find: \[ \lfloor I_1 + I_3 + I_4 \rfloor = \lfloor \frac{40}{9} \rfloor = \lfloor 4.4444 \rfloor = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes greatest integer function is

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. int( x^3)/(x^2-3)dx

    Text Solution

    |

  4. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. int( x^3)/(x^2-2)dx

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  10. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. int sqrt (x^2+4) dx

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) int (-pi)^(pi) ((pi)/(2) -|x|) cos...

    Text Solution

    |