Home
Class 12
MATHS
(dy)/(dx) ((1+ cos x)/(y)) =- sin x and ...

`(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1,` then `f (0)` is:

A

-2

B

1

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the value of \( f(0) \), we will follow these steps: ### Step 1: Write the differential equation The given differential equation is: \[ \frac{dy}{dx} \cdot \frac{1 + \cos x}{y} = -\sin x \] ### Step 2: Separate the variables We can separate the variables by rearranging the equation: \[ \frac{dy}{y} = -\frac{\sin x}{1 + \cos x} dx \] ### Step 3: Integrate both sides Now we will integrate both sides: \[ \int \frac{dy}{y} = \int -\frac{\sin x}{1 + \cos x} dx \] The left side integrates to: \[ \ln |y| + C_1 \] ### Step 4: Simplify the right side integral For the right side, we can use the substitution \( t = 1 + \cos x \). Then, the derivative is: \[ dt = -\sin x \, dx \quad \Rightarrow \quad -\sin x \, dx = dt \] Thus, the integral becomes: \[ \int -\frac{\sin x}{1 + \cos x} dx = \int \frac{dt}{t} = \ln |t| + C_2 \] Substituting back for \( t \): \[ \ln |1 + \cos x| + C_2 \] ### Step 5: Combine the results Now we equate the two integrals: \[ \ln |y| = \ln |1 + \cos x| + C \] where \( C = C_2 - C_1 \). ### Step 6: Exponentiate both sides Exponentiating both sides gives: \[ |y| = e^C |1 + \cos x| \] Let \( k = e^C \), then: \[ y = k(1 + \cos x) \] ### Step 7: Use the initial condition We are given that \( f\left(\frac{\pi}{2}\right) = -1 \). Substituting \( x = \frac{\pi}{2} \): \[ -1 = k(1 + \cos(\frac{\pi}{2})) = k(1 + 0) = k \] Thus, \( k = -1 \). ### Step 8: Write the final function Now we can write the function: \[ y = -1(1 + \cos x) = -1 - \cos x \] ### Step 9: Find \( f(0) \) Now we need to find \( f(0) \): \[ f(0) = -1 - \cos(0) = -1 - 1 = -2 \] ### Final Answer Thus, the value of \( f(0) \) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|7 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If y= y(x) ( 2 _ cos x ) /( y+1) (( dy )/(dx)) =- sin x, y (0) =1 then y((pi)/(2)) equal ____.

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Let y=f(x) be a solution of the differential equation (dy)/(dx)=(y^(2)-x^(2))/(2xy)(AA x, y gt 0) . If f(1)=2 , then f'(1) is equal to

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to

If xsin((y)/(x))dy = (y sin((y)/(x))-x)dx and y(1) = (pi)/(2) then the value of cos((y)/(e^(7))) is __________.

If f(x)=2(1+sin x), then evaluate f((pi)/(2)) .

If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to