Home
Class 12
MATHS
If y=y(x) and it follows the relation e^...

If `y=y(x)` and it follows the relation `e^(xy^2)+ycos(x^2)=5` then `y'(0)` is equal to

A

4

B

`-16`

C

`-4`

D

`16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given equation and find the value of \( y'(0) \). ### Step-by-Step Solution: 1. **Given Equation**: \[ e^{xy^2} + y \cos(x^2) = 5 \] 2. **Differentiate Both Sides with Respect to \( x \)**: Using implicit differentiation, we differentiate the left side: \[ \frac{d}{dx}(e^{xy^2}) + \frac{d}{dx}(y \cos(x^2)) = 0 \] 3. **Differentiate \( e^{xy^2} \)**: Using the product rule and chain rule: \[ \frac{d}{dx}(e^{xy^2}) = e^{xy^2} \cdot \frac{d}{dx}(xy^2) = e^{xy^2} \left( y^2 + x \cdot 2y \frac{dy}{dx} \right) \] 4. **Differentiate \( y \cos(x^2) \)**: Again using the product rule: \[ \frac{d}{dx}(y \cos(x^2)) = \frac{dy}{dx} \cos(x^2) + y \cdot \frac{d}{dx}(\cos(x^2)) = \frac{dy}{dx} \cos(x^2) - y \sin(x^2) \cdot 2x \] 5. **Combine the Derivatives**: Combining both parts gives: \[ e^{xy^2} \left( y^2 + 2xy \frac{dy}{dx} \right) + \frac{dy}{dx} \cos(x^2) - 2xy \sin(x^2) = 0 \] 6. **Factor Out \( \frac{dy}{dx} \)**: Rearranging the equation to isolate \( \frac{dy}{dx} \): \[ \left( 2xy e^{xy^2} + \cos(x^2) \right) \frac{dy}{dx} = 2xy \sin(x^2) - y^2 e^{xy^2} \] Thus, \[ \frac{dy}{dx} = \frac{2xy \sin(x^2) - y^2 e^{xy^2}}{2xy e^{xy^2} + \cos(x^2)} \] 7. **Evaluate at \( x = 0 \)**: Now we need to find \( y'(0) \). First, we need to find \( y(0) \) by substituting \( x = 0 \) into the original equation: \[ e^{0 \cdot y(0)^2} + y(0) \cos(0^2) = 5 \] This simplifies to: \[ 1 + y(0) = 5 \implies y(0) = 4 \] 8. **Substitute \( x = 0 \) and \( y(0) = 4 \) into the Derivative**: Now substitute \( x = 0 \) and \( y(0) = 4 \) into the derivative expression: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{2 \cdot 0 \cdot 4 \cdot \sin(0) - 4^2 e^{0}}{2 \cdot 0 \cdot 4 \cdot e^{0} + \cos(0)} = \frac{0 - 16}{0 + 1} = -16 \] 9. **Final Result**: Therefore, the value of \( y'(0) \) is: \[ y'(0) = -16 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|7 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If y=y(x) and it follows the relation 4x e^(x y)=y+5sin^2x , then y^(prime)(0) is equal to______

If y=y(x) and it follows the relation 4x e^(x y)=y+5sin^2x , then y^(prime)(0) is equal to______

If y=y(x) and it follows the relation 4x e^(x y)=y+5sin^2x , then y^(prime)(0) is equal to______

If y=y(x) and it follows the relation 4x e^(x y)=y+5sin^2x , then y^(prime)(0) is equal to______

If y = y(x) and it follows the relation e^(xy) + y cos x = 2 , then find (i) y'(0) and (ii) y"(0) .

If log(x+y)=2xy, then y'(0) is

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Area bounded by x ^(2) y ^(2)+ y ^(4)-x ^(2)-5y ^(2)+4=0 is equal to :

Add the following expressions: x^(2)-2xy+3y^(2), 5y^(2)+3xy-6x^(2)