Home
Class 12
MATHS
If a function satisfies (x-y)f(x+y)-(x+y...

If a function satisfies `(x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2, then a) f(x) must be polynomial function, b) f(3)=12, c) f(0)=0, d) f(x) may not be differentiable.

A

f (x) must be polynomial function

B

`f (3) =12`

C

`f (0)=0`

D

`f (3) =13`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|7 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

Let f(x+y) + f(x-y) = 2f(x)f(y) for x, y in R and f(0) != 0 . Then f(x) must be

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

If f' ((x)/(y)). f((y)/(x))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1)=1 , then f^(2) (x) is

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f(x) is a function satisfying f(x)-f(y)=(y^y)/(x^x)f((x^x)/(y^y))AAx , y in R^*"and"f^(prime)(1)=1 , then find f(x)