Home
Class 12
MATHS
A function y-f (x) satisfies the differe...

A function `y-f (x)` satisfies the differential equation
`f (x) sin 2x - cos x+(1+ sin ^(2)x) f'(x) =0` with `f (0) =0.` The value of `f ((pi)/(6))` equals to :

A

`2/5`

B

`3/5`

C

`1/5`

D

`4/5`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|7 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

A function y=f (x) satisfies the differential equation f(x) sin 2x-cos x+(1 + sin^2x)f'(x)= 0 with initial condition y(0)=0 . The value of f(pi/6) is equal to (A) 1/5 (B) 3/5 (C) 4/5 (D) 2/5

A function y = f(x) satisfies the differential (dy)/(dx)*sin x -y cos x+sin^2 x/x^2=0 such that y -> 0 as x -> oo . Then:

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

A function y=f(x) satisfies A function y=f(x) satisfies f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2 and f(1)=0 . The value of f(1/2) then

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .