Home
Class 12
MATHS
Let f (x) be a diffentiable function in ...

Let `f (x)` be a diffentiable function in `[-1,oo) and f (0) =1` such that `Lim _(t to x +1) (t^(2) f(x+1) -(x+1) ^(2) f(t))/(f (t) -f(x+1))=1.` Find the value of `Lim _(x to 1) (ln (f(x )) -ln 2)/(x-1)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow a step-by-step approach. ### Step 1: Analyze the Given Limit We start with the limit condition provided in the problem: \[ \lim_{t \to x + 1} \frac{t^2 f(x + 1) - (x + 1)^2 f(t)}{f(t) - f(x + 1)} = 1 \] This limit is in the form \( \frac{0}{0} \) when we substitute \( t = x + 1 \). Therefore, we can apply L'Hôpital's rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's rule, we differentiate the numerator and denominator with respect to \( t \): - **Numerator**: \[ \frac{d}{dt} \left( t^2 f(x + 1) - (x + 1)^2 f(t) \right) = 2t f(x + 1) - (x + 1)^2 f'(t) \] - **Denominator**: \[ \frac{d}{dt} (f(t) - f(x + 1)) = f'(t) \] Thus, we have: \[ \lim_{t \to x + 1} \frac{2t f(x + 1) - (x + 1)^2 f'(t)}{f'(t)} = 1 \] ### Step 3: Substitute \( t = x + 1 \) Substituting \( t = x + 1 \): \[ \frac{2(x + 1) f(x + 1) - (x + 1)^2 f'(x + 1)}{f'(x + 1)} = 1 \] This simplifies to: \[ 2(x + 1) f(x + 1) - (x + 1)^2 f'(x + 1) = f'(x + 1) \] Rearranging gives: \[ 2(x + 1) f(x + 1) = (x + 1)^2 f'(x + 1) + f'(x + 1) \] \[ 2(x + 1) f(x + 1) = (x + 1)^2 f'(x + 1) + f'(x + 1) = (x + 1)^2 f'(x + 1) + f'(x + 1) \] \[ 2(x + 1) f(x + 1) = (x + 2) f'(x + 1) \] ### Step 4: Solve for \( f(x + 1) \) From the equation: \[ f'(x + 1) = \frac{2(x + 1) f(x + 1)}{x + 2} \] ### Step 5: Change of Variables Let \( y = f(x + 1) \). Then we have: \[ f'(x + 1) = \frac{2(x + 1) y}{x + 2} \] This means: \[ \frac{dy}{dx} = \frac{2(x + 1) y}{x + 2} \] ### Step 6: Separate Variables and Integrate We can separate variables: \[ \frac{dy}{y} = \frac{2(x + 1)}{x + 2} dx \] Integrating both sides gives: \[ \ln |y| = 2 \ln |x + 2| - 2 \ln |x + 1| + C \] Exponentiating both sides results in: \[ y = k \cdot \frac{(x + 2)^2}{(x + 1)^2} \] Where \( k = e^C \). ### Step 7: Find \( f(0) = 1 \) Given \( f(0) = 1 \): \[ f(1) = k \cdot \frac{(0 + 2)^2}{(0 + 1)^2} = k \cdot 4 \] Setting \( 4k = 1 \) gives \( k = \frac{1}{4} \). ### Step 8: Final Form of \( f(x) \) Thus, we have: \[ f(x + 1) = \frac{(x + 2)^2}{4(x + 1)^2} \] ### Step 9: Evaluate the Limit Now we need to find: \[ \lim_{x \to 1} \frac{\ln(f(x)) - \ln(2)}{x - 1} \] Substituting \( f(x) \): \[ = \lim_{x \to 1} \frac{\ln\left(\frac{(x + 2)^2}{4(x + 1)^2}\right) - \ln(2)}{x - 1} \] This simplifies to: \[ = \lim_{x \to 1} \frac{\ln((x + 2)^2) - \ln(4) - \ln(2) + \ln((x + 1)^2)}{x - 1} \] \[ = \lim_{x \to 1} \frac{2\ln(x + 2) - 2\ln(x + 1) - \ln(4)}{x - 1} \] ### Step 10: Apply L'Hôpital's Rule Again This limit is in the form \( \frac{0}{0} \), so we apply L'Hôpital's rule again: \[ = \lim_{x \to 1} \frac{\frac{2}{x + 2} - \frac{2}{x + 1}}{1} = \frac{2}{3} - \frac{2}{2} = \frac{2}{3} - 1 = -\frac{1}{3} \] ### Conclusion Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|7 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be differentiable on the interval (0,oo) such that f(1)=1 and lim_(t->x) (t^2f(x)-x^2f(t))/(t-x)=1 for each x>0 . Then f(x)=

If f(x) is differentiable function in the interval (0,oo) such that f(1) = 1 and lim_(trarrx) (t^(2)f(x)-x^(2)(t))/(t-x)=1 for each x gt 0 , then f((3)/(2)) is equal tv

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f be continuous function on [0,oo) such that lim _(x to oo) (f(x)+ int _(o)^(x) f (t ) (dt)) exists. Find lim _(x to oo) f (x).

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If lim_(trarrx) (e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

For the function f(x) = 2 . Find lim_(x to 1) f(x)