Home
Class 12
MATHS
Let a,b,c, d be the roots of x ^(4) -x ^...

Let a,b,c, d be the roots of `x ^(4) -x ^(3)-x ^(2) -1=0.` Also consider `P (x) =x ^(6)-x ^(5) -x ^(3) -x ^(2) -x,` then the value of `p (a) +p(b) +p(c ) +p(d)` is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( P(a) + P(b) + P(c) + P(d) \) where \( a, b, c, d \) are the roots of the polynomial \( x^4 - x^3 - x^2 - 1 = 0 \) and \( P(x) = x^6 - x^5 - x^3 - x^2 - x \). ### Step 1: Identify the polynomial \( Q(x) \) We start with the polynomial \( Q(x) = x^4 - x^3 - x^2 - 1 \). Since \( a, b, c, d \) are the roots of \( Q(x) \), we know that \( Q(a) = Q(b) = Q(c) = Q(d) = 0 \). ### Step 2: Express \( P(x) \) in terms of \( Q(x) \) We can express \( P(x) \) in terms of \( Q(x) \). We can perform polynomial long division of \( P(x) \) by \( Q(x) \): \[ P(x) = x^6 - x^5 - x^3 - x^2 - x \] Dividing \( P(x) \) by \( Q(x) \): 1. Divide \( x^6 \) by \( x^4 \) to get \( x^2 \). 2. Multiply \( Q(x) \) by \( x^2 \) to get \( x^6 - x^5 - x^4 - x^2 \). 3. Subtract this from \( P(x) \): \[ P(x) - (x^6 - x^5 - x^4 - x^2) = x^4 - x^3 - x \] 4. Now, divide \( x^4 - x^3 - x \) by \( Q(x) \): Since \( x^4 - x^3 - x \) is of lower degree than \( Q(x) \), we can express: \[ P(x) = Q(x) \cdot (x^2) + (x^4 - x^3 - x) \] ### Step 3: Evaluate \( P(a) \) Since \( Q(a) = 0 \), we have: \[ P(a) = 0 \cdot (a^2) + (a^4 - a^3 - a) = a^4 - a^3 - a \] Similarly, we can find: \[ P(b) = b^4 - b^3 - b \] \[ P(c) = c^4 - c^3 - c \] \[ P(d) = d^4 - d^3 - d \] ### Step 4: Sum \( P(a) + P(b) + P(c) + P(d) \) Now we can sum these: \[ P(a) + P(b) + P(c) + P(d) = (a^4 - a^3 - a) + (b^4 - b^3 - b) + (c^4 - c^3 - c) + (d^4 - d^3 - d) \] This simplifies to: \[ = (a^4 + b^4 + c^4 + d^4) - (a^3 + b^3 + c^3 + d^3) - (a + b + c + d) \] ### Step 5: Use Vieta's Formulas Using Vieta's formulas for the roots of \( Q(x) \): - \( a + b + c + d = 1 \) - \( ab + ac + ad + bc + bd + cd = -1 \) - \( abc + abd + acd + bcd = 0 \) - \( abcd = 1 \) To find \( a^2 + b^2 + c^2 + d^2 \): \[ a^2 + b^2 + c^2 + d^2 = (a + b + c + d)^2 - 2(ab + ac + ad + bc + bd + cd) = 1^2 - 2(-1) = 1 + 2 = 3 \] Now, we can find \( a^3 + b^3 + c^3 + d^3 \): \[ a^3 + b^3 + c^3 + d^3 = (a + b + c + d)(a^2 + b^2 + c^2 + d^2 - (ab + ac + ad + bc + bd + cd)) = 1(3 - (-1)) = 1 \cdot 4 = 4 \] Now we can find \( a^4 + b^4 + c^4 + d^4 \): Using the identity \( a^4 + b^4 + c^4 + d^4 = (a^2 + b^2 + c^2 + d^2)^2 - 2(a^2b^2 + a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + c^2d^2) \). To find \( a^2b^2 + a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + c^2d^2 \): Using \( (ab + ac + ad + bc + bd + cd)^2 = a^2b^2 + a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + c^2d^2 + 2(abc + abd + acd + bcd) \): \[ (-1)^2 = 1 = a^2b^2 + a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + c^2d^2 + 0 \] \[ \Rightarrow a^2b^2 + a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + c^2d^2 = 1 \] Now substituting back: \[ a^4 + b^4 + c^4 + d^4 = 3^2 - 2(1) = 9 - 2 = 7 \] ### Final Calculation Now substituting back into the sum: \[ P(a) + P(b) + P(c) + P(d) = (7) - (4) - (1) = 7 - 4 - 1 = 2 \] ### Conclusion Thus, the value of \( P(a) + P(b) + P(c) + P(d) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

If p(x) =x^(2)-4x+3, then evaluate p(2) -p(-1)+p((1)/(2)) .

If P(x) =x+3, then p(x)+p(-x) is equal to

(4) If p(x)=x^(3)-2x^(2)-x+2=(x+1)(x-2)(x-d) then what is the value of d?

If p = (x^(a+ b))/(x^b) , what is the value of positive integer p? (1) x = 5 (2) a = 0

For which values of a and b , the zeroes of q(x) = x^(3)+2x^(2)+a are also the zeroes of the polynomial p(x) = x^(5)-x^(4)-4x^(3)+3x^(2)+3x +b ? Which zeores of p(x) are not the zeroes of q(x) ?

Let a and p be the roots of equation x^2 + x - 3 = 0 . Find the value of the expression 4p^2 - a^3 .

Leg P(x)=|7 6x-10 2x-10 5x-10 3 4| , sum of zeroes of P(x) is (a) 30 (b) 28 (c) 27 (d) None of these

If (1-p)(1+3x+9x^2+27 x^3+81 x^4+243 x^5)=1-p^6,p!=1 , then the value of p/x is a. 1/3 b. 3 c. 1/2 d. 2

Let a, b be the roots of the equation x^(2) - 4 x +k_(1) = 0 and c , d the roots of the equation x^(2) - 36 x + k_(2) = 0 If a lt b lt c lt d and a, b,c,d are in G.P. then the product k_(1) k_(2) equals

For which values of a and b are zeroes of q(X) =x^(3)+2x+a also zeroes of the polynomial p(x) =x^(5)-x^(4)-4x^(3)+3x^(2)+3x+b ? Which zeroes of p(x) are not zeroes of p(x)?

VK JAISWAL ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the smallest positive integral value of a for which the greater r...

    Text Solution

    |

  2. If the equation x ^(4)+kx ^(2) +k=0 has exactly two distinct real root...

    Text Solution

    |

  3. Let a,b,c, d be the roots of x ^(4) -x ^(3)-x ^(2) -1=0. Also consider...

    Text Solution

    |

  4. The number of integral value of a,a, in [-5, 5] for which the equation...

    Text Solution

    |

  5. The number of non-negative integral vlaues of n, n le 10 so that a roo...

    Text Solution

    |

  6. If and y ar real numbers connected by the equation 9x ^(2)+2xy+y^(2) -...

    Text Solution

    |

  7. Consider two numbers a,b, sum of which is 3 and the sum of their cubes...

    Text Solution

    |

  8. If y ^(2)(y^(2) -6) + x ^(2) -8x +24 =0 and the minimum value of x ^(...

    Text Solution

    |

  9. Consider the equation x ^(3) -ax ^(2) +bx-c=0, where a,b,c are ration...

    Text Solution

    |

  10. Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisf...

    Text Solution

    |

  11. The number of ordered pairs (a,b) where a,b are integers satisfying th...

    Text Solution

    |

  12. The real value of x satisfying ""^(3)sqrt(20x +^(3)sqrt(20x+13))=13 c...

    Text Solution

    |

  13. If the range of the values of a for which the roots of the equation x ...

    Text Solution

    |

  14. Find the number of positive integers satisfying the inequality x^(2) -...

    Text Solution

    |

  15. If sin theta and cos theta are the roots of the quadratic equation ax...

    Text Solution

    |

  16. Let the inequality sin ^(2) x+a cos x +a ^(2) ge1+ cos x is satisfied...

    Text Solution

    |

  17. If alpha,beta are the roots of the equation 2x^2-35+2=0 , the find the...

    Text Solution

    |

  18. The sum of all integral values of 'a' for which the equation 2x ^(2) -...

    Text Solution

    |

  19. Let f (x) be a polynomial of degree 8 such that F ®=1/r, =1,2,3,…,8,9,...

    Text Solution

    |

  20. Let alpha, beta are two real roots of equation x ^(2) + px+ q =0, p ,q...

    Text Solution

    |