Home
Class 12
MATHS
Let alpha satisfy the equation x ^(3) +3...

Let `alpha` satisfy the equation `x ^(3) +3x ^(2) +4x+5=0 and beta` satisfy the equatin `x ^(3) -3x ^(2)+4x-5=0,alpha, beta in R, ` then `alpha + beta =`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha + \beta \) where \( \alpha \) satisfies the equation \( x^3 + 3x^2 + 4x + 5 = 0 \) and \( \beta \) satisfies the equation \( x^3 - 3x^2 + 4x - 5 = 0 \). ### Step-by-Step Solution: 1. **Write the equations for \( \alpha \) and \( \beta \)**: - For \( \alpha \): \[ \alpha^3 + 3\alpha^2 + 4\alpha + 5 = 0 \tag{1} \] - For \( \beta \): \[ \beta^3 - 3\beta^2 + 4\beta - 5 = 0 \tag{2} \] 2. **Add the two equations**: \[ (\alpha^3 + 3\alpha^2 + 4\alpha + 5) + (\beta^3 - 3\beta^2 + 4\beta - 5) = 0 \] This simplifies to: \[ \alpha^3 + \beta^3 + 3\alpha^2 - 3\beta^2 + 4\alpha + 4\beta + 0 = 0 \] Thus, we can rearrange it as: \[ \alpha^3 + \beta^3 + 3(\alpha^2 - \beta^2) + 4(\alpha + \beta) = 0 \] 3. **Factor \( \alpha^2 - \beta^2 \)**: Using the identity \( a^2 - b^2 = (a-b)(a+b) \): \[ \alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta) \] Therefore, we can rewrite the equation as: \[ \alpha^3 + \beta^3 + 3(\alpha - \beta)(\alpha + \beta) + 4(\alpha + \beta) = 0 \] 4. **Use the identity for \( \alpha^3 + \beta^3 \)**: The identity for the sum of cubes is: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \] Substituting this into our equation gives: \[ (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) + 3(\alpha - \beta)(\alpha + \beta) + 4(\alpha + \beta) = 0 \] 5. **Factor out \( \alpha + \beta \)**: Factoring out \( \alpha + \beta \): \[ (\alpha + \beta)\left(\alpha^2 - \alpha\beta + \beta^2 + 3(\alpha - \beta) + 4\right) = 0 \] This gives us two cases: - Case 1: \( \alpha + \beta = 0 \) - Case 2: \( \alpha^2 - \alpha\beta + \beta^2 + 3(\alpha - \beta) + 4 = 0 \) 6. **Conclusion**: Since we are asked to find \( \alpha + \beta \), we can conclude from Case 1: \[ \alpha + \beta = 0 \] ### Final Answer: \[ \alpha + \beta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

A real value of x satisfies the equation (3-4ix)/(3+4ix)=alpha-ibeta(alpha,beta in R) , if alpha^2+beta^2=

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are roots of the quadratic equation x ^(2) + 4x +3=0, then the equation whose roots are 2 alpha + beta and alpha + 2 beta is :

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

A real value of of x satisfies the equation (3-4ix)/(3+4ix)= alpha-ibeta(alpha,beta in R) if alpha^(2)+beta^(2)) =

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=

Let alpha,beta be the roots of the equation ax^2+bx+c=0 . A root of the equation a^3x^2+abcx+c^3=0 is (i) alpha+beta (ii) alpha^2+beta (iii) alpha^2-beta (iv) alpha^2beta

Let alpha,beta be the roots of the equation ax^2+bx+c=0 . A root of the equation a^3x^2+abcx+c^3=0 is (i) alpha+beta (ii) alpha^2+beta (iii) alpha^2-beta (iv) alpha^2beta

VK JAISWAL ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let a,b,c, d be the roots of x ^(4) -x ^(3)-x ^(2) -1=0. Also consider...

    Text Solution

    |

  2. The number of integral value of a,a, in [-5, 5] for which the equation...

    Text Solution

    |

  3. The number of non-negative integral vlaues of n, n le 10 so that a roo...

    Text Solution

    |

  4. If and y ar real numbers connected by the equation 9x ^(2)+2xy+y^(2) -...

    Text Solution

    |

  5. Consider two numbers a,b, sum of which is 3 and the sum of their cubes...

    Text Solution

    |

  6. If y ^(2)(y^(2) -6) + x ^(2) -8x +24 =0 and the minimum value of x ^(...

    Text Solution

    |

  7. Consider the equation x ^(3) -ax ^(2) +bx-c=0, where a,b,c are ration...

    Text Solution

    |

  8. Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisf...

    Text Solution

    |

  9. The number of ordered pairs (a,b) where a,b are integers satisfying th...

    Text Solution

    |

  10. The real value of x satisfying ""^(3)sqrt(20x +^(3)sqrt(20x+13))=13 c...

    Text Solution

    |

  11. If the range of the values of a for which the roots of the equation x ...

    Text Solution

    |

  12. Find the number of positive integers satisfying the inequality x^(2) -...

    Text Solution

    |

  13. If sin theta and cos theta are the roots of the quadratic equation ax...

    Text Solution

    |

  14. Let the inequality sin ^(2) x+a cos x +a ^(2) ge1+ cos x is satisfied...

    Text Solution

    |

  15. If alpha,beta are the roots of the equation 2x^2-35+2=0 , the find the...

    Text Solution

    |

  16. The sum of all integral values of 'a' for which the equation 2x ^(2) -...

    Text Solution

    |

  17. Let f (x) be a polynomial of degree 8 such that F ®=1/r, =1,2,3,…,8,9,...

    Text Solution

    |

  18. Let alpha, beta are two real roots of equation x ^(2) + px+ q =0, p ,q...

    Text Solution

    |

  19. If cos A, cos B and cos C are the roots of the cubic x^(3)+ax^(2)+bx+c...

    Text Solution

    |

  20. Find the value of a for which a x^2+(a-3)x+1<0 for at least one positi...

    Text Solution

    |