Home
Class 12
MATHS
Let z(1),z(2) and z(3) be three points o...

Let `z_(1),z_(2)` and `z_(3)` be three points on `|z|=1`. If `theta_(1), theta_(2)` and `theta_(3)` be the arguments of `z_(1),z_(2),z_(3)` respectively, then `cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))`

A

`ge -3/2`

B

`le-3/2`

C

`ge 3/2`

D

`le 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \( \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \) given that \( z_1, z_2, z_3 \) are points on the unit circle (i.e., \( |z| = 1 \)). ### Step-by-Step Solution: 1. **Understanding the Points on the Unit Circle**: Since \( z_1, z_2, z_3 \) lie on the unit circle, we can express them in terms of their arguments: \[ z_1 = e^{i\theta_1}, \quad z_2 = e^{i\theta_2}, \quad z_3 = e^{i\theta_3} \] where \( \theta_1, \theta_2, \theta_3 \) are the angles corresponding to \( z_1, z_2, z_3 \). 2. **Using the Cosine Addition Formula**: We know from trigonometry that: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Thus, we can express the cosines in our expression: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \] 3. **Expressing in Terms of Complex Numbers**: The sum \( z_1 + z_2 + z_3 \) can be analyzed: \[ z_1 + z_2 + z_3 = e^{i\theta_1} + e^{i\theta_2} + e^{i\theta_3} \] The modulus of this sum squared is: \[ |z_1 + z_2 + z_3|^2 = (z_1 + z_2 + z_3)(\overline{z_1 + z_2 + z_3}) = z_1\overline{z_1} + z_2\overline{z_2} + z_3\overline{z_3} + 2 \text{Re}(z_1\overline{z_2} + z_2\overline{z_3} + z_3\overline{z_1}) \] Since \( |z_1| = |z_2| = |z_3| = 1 \), we have: \[ |z_1 + z_2 + z_3|^2 = 3 + 2 \text{Re}(z_1\overline{z_2} + z_2\overline{z_3} + z_3\overline{z_1}) \] 4. **Setting Up the Inequality**: Since \( |z_1 + z_2 + z_3|^2 \geq 0 \), we have: \[ 3 + 2 \text{Re}(z_1\overline{z_2} + z_2\overline{z_3} + z_3\overline{z_1}) \geq 0 \] Rearranging gives: \[ 2 \text{Re}(z_1\overline{z_2} + z_2\overline{z_3} + z_3\overline{z_1}) \geq -3 \] Dividing by 2: \[ \text{Re}(z_1\overline{z_2} + z_2\overline{z_3} + z_3\overline{z_1}) \geq -\frac{3}{2} \] 5. **Relating to Cosines**: The real part can be expressed in terms of cosines: \[ \text{Re}(z_1\overline{z_2}) = \cos(\theta_1 - \theta_2), \quad \text{Re}(z_2\overline{z_3}) = \cos(\theta_2 - \theta_3), \quad \text{Re}(z_3\overline{z_1}) = \cos(\theta_3 - \theta_1) \] Thus, we have: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \geq -\frac{3}{2} \] ### Conclusion: The final result is: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \geq -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

Let t_1,t_2,t_3 be the three distinct points on circle |t|=1. if theta_1,theta_2 and theta_3 be the arguments of t_1,t_2,t_3 respectively then cos(theta_1- theta_2) + cos (theta_2-theta_3)+ cos (theta_3-theta_1)

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

If 0 lt theta_(2) lt theta_(1) lt pi/4, cos (theta_(1) + theta_(2)) = 3/5 and cos(theta_(1)-theta_(2))=4/5 , then sintheta_(1) sintheta_(2) equal to

If (cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0, then tantheta_(1)tan theta_(2)tan theta_(3)tan theta_(4)=

theta_(1),theta_(2),theta_(3) are angles of 1^(st) quadrant if tan theta_(1) = cos theta_(1), tan theta_(2) = cosec theta_(2), cos theta_(3)=theta_(3) . Which of the following is not true ?

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

The three sides of a triangle are L_(r) + x cos theta_(r) + y sin theta _(r) - p_(r) = 0 where r = 1,2,3 . Show that the orthocentre is given by L_(1) cos (theta_(2)-theta_(3)) = L_(2)cos (theta_(3)-theta_(1)) = L_(3)cos (theta_(1)-theta_(2)) .

"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1 , If theta belongs to