Home
Class 12
MATHS
If omega be an imaginary n^(th) root of ...

If `omega` be an imaginary `n^(th)` root of unity , then `sum_(r=1)^(n)(ar+b) omega^(r-1)` is equal to :

A

`(n(n+1)a)/(2omega)`

B

`(nb)/(1-n)`

C

`(na)/(omega-1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex nth root of unity, then sum_(r=1)^n(ar+b)omega^(r-1) is equal to A.. (n(n+1)a)/2 B. (n b)/(1+n) C. (n a)/(omega-1) D. none of these

If omega is a complex nth root of unity, then sum_(r=1)^n(a+b)omega^(r-1) is equal to (n(n+1)a)/2 b. (n b)/(1+n) c. (n a)/(omega-1) d. none of these

If omega is a complex nth root of unity, then underset(r=1)overset(n)(ar+b)omega^(r-1) is equal to

sum_(r=1)^n (a^r +br) , a , b in R^+ is equal to :

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

Let 1/(a_1+omega) + 1/(a_2+omega)+1/(a_3+omega)+ … . + 1/(a_n+omega)=i where a_1,a_2,a_3 …. a_n in R and omega is imaginary cube root of unity , then evaluate sum_(r=1)^(n)(2a_r-1)/(a_r^2-a_r+1) .

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4