Home
Class 12
MATHS
if |z-2i| le sqrt2 , then the maximum va...

if `|z-2i| le sqrt2` , then the maximum value of |3+i(z-1)| is :

A

`sqrt2`

B

`2sqrt2`

C

`2+sqrt2`

D

`3+2sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( |3 + i(z - 1)| \) given the condition \( |z - 2i| \leq \sqrt{2} \). ### Step-by-Step Solution: 1. **Understand the given condition**: We have \( |z - 2i| \leq \sqrt{2} \). This represents a circle in the complex plane centered at \( 2i \) (which is the point \( (0, 2) \) in the Cartesian plane) with a radius of \( \sqrt{2} \). 2. **Express \( z \)**: Let \( z = x + iy \). The condition can be rewritten as: \[ |(x + iy) - 2i| \leq \sqrt{2} \implies |x + i(y - 2)| \leq \sqrt{2} \] This implies: \[ \sqrt{x^2 + (y - 2)^2} \leq \sqrt{2} \] Squaring both sides gives: \[ x^2 + (y - 2)^2 \leq 2 \] 3. **Rearranging the expression**: We need to find the maximum value of \( |3 + i(z - 1)| \): \[ |3 + i(z - 1)| = |3 + i(x + iy - 1)| = |3 + i(x - 1 + iy)| \] This can be expressed as: \[ |3 + i(x - 1 + iy)| = |3 + i((y - 2) + 2)| = |3 + i(y - 1)| \] 4. **Using the triangle inequality**: We can use the triangle inequality: \[ |3 + i(y - 1)| \leq |3| + |i(y - 1)| = 3 + |y - 1| \] 5. **Finding the maximum of \( |y - 1| \)**: From the condition \( x^2 + (y - 2)^2 \leq 2 \), we can find the maximum and minimum values of \( y \): - The center of the circle is at \( (0, 2) \) with a radius of \( \sqrt{2} \). - The maximum value of \( y \) occurs at \( y = 2 + \sqrt{2} \) and the minimum value occurs at \( y = 2 - \sqrt{2} \). 6. **Calculating \( |y - 1| \)**: - Maximum \( y = 2 + \sqrt{2} \): \[ |y - 1| = |(2 + \sqrt{2}) - 1| = |1 + \sqrt{2}| \] - Minimum \( y = 2 - \sqrt{2} \): \[ |y - 1| = |(2 - \sqrt{2}) - 1| = |1 - \sqrt{2}| \] - The maximum value of \( |y - 1| \) occurs at \( y = 2 + \sqrt{2} \): \[ |y - 1| = 1 + \sqrt{2} \] 7. **Final calculation**: Now substituting back into our inequality: \[ |3 + i(y - 1)| \leq 3 + (1 + \sqrt{2}) = 4 + \sqrt{2} \] ### Conclusion: Thus, the maximum value of \( |3 + i(z - 1)| \) is \( 4 + \sqrt{2} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

If |z-1|+|z+3|le8, then the maximum, value of |z-4| is =

For a complex number Z, if |Z-i|le2 and Z_(1)=5+3i , then the maximum value of |iZ+Z_(1)| is (where, i^(2)=-1 )

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

If |z +2 - i |=5 then the maximum value of |3z+9-7i| is K, then find k

If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3)+""1 (2) sqrt(5)+""1 (3) 2 (4) 2""+sqrt(2)

If abs(z+4) le 3 , the maximum value of abs(z+1) is

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to