Home
Class 12
MATHS
If z1,z2,z3 are three complex numbers su...

If `z_1,z_2,z_3` are three complex numbers such that `|z_1|=|z_2|=1`, find the maximum value of `|z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2`

A

If arg`(z_1/z_2) = pi/2` then arg `((z-z_1)/(z-z_2)) gt pi/4` where |z| gt 1

B

`|z_1z_2 + z_2z_3 + z_3z_1 | = | z_1 + z_2 + z_3| `

C

`lm(((z_1+z_2)(z_2+z_3)(z_3+z_1))/(z_1.z_2.z_3))=0`

D

If `|z_1-z_2|=sqrt2|z_1-z_3| =sqrt2 |z_2-z_3| `, then Re`((z_3-z_1)/(z_3-z_2))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 + z_1|^2 \) given that \( |z_1| = |z_2| = 1 \). ### Step-by-Step Solution: 1. **Understanding the Magnitude Condition**: Since \( |z_1| = |z_2| = 1 \), we can represent \( z_1 \) and \( z_2 \) as points on the unit circle in the complex plane: \[ z_1 = e^{i\theta_1}, \quad z_2 = e^{i\theta_2} \] where \( \theta_1 \) and \( \theta_2 \) are angles. 2. **Expressing the Distances**: The expression we need to maximize can be rewritten using the properties of complex numbers: \[ |z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1 - z_2}) = |z_1|^2 + |z_2|^2 - 2 \text{Re}(z_1 \overline{z_2}) = 1 + 1 - 2 \text{Re}(z_1 \overline{z_2}) = 2 - 2 \cos(\theta_1 - \theta_2) \] 3. **Calculating Each Term**: Similarly, we can express \( |z_2 - z_3|^2 \) and \( |z_3 + z_1|^2 \): \[ |z_2 - z_3|^2 = 2 - 2 \cos(\theta_2 - \theta_3) \] \[ |z_3 + z_1|^2 = |z_3|^2 + |z_1|^2 + 2 \text{Re}(z_3 \overline{z_1}) = 1 + 1 + 2 \text{Re}(z_3 \overline{z_1}) = 2 + 2 \cos(\theta_3 + \theta_1) \] 4. **Combining the Terms**: Now, we combine all these expressions: \[ |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 + z_1|^2 = (2 - 2 \cos(\theta_1 - \theta_2)) + (2 - 2 \cos(\theta_2 - \theta_3)) + (2 + 2 \cos(\theta_3 + \theta_1)) \] This simplifies to: \[ 6 - 2(\cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3)) + 2 \cos(\theta_3 + \theta_1) \] 5. **Maximizing the Expression**: To maximize the expression, we need to minimize \( \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) \) and maximize \( \cos(\theta_3 + \theta_1) \). The maximum value of \( \cos \) is 1 and the minimum value is -1. If we set \( \theta_1 = 0 \), \( \theta_2 = \pi \) (180 degrees), and \( \theta_3 = 0 \), we can achieve: \[ \cos(\theta_1 - \theta_2) = -1, \quad \cos(\theta_2 - \theta_3) = -1, \quad \cos(\theta_3 + \theta_1) = 1 \] 6. **Calculating the Maximum Value**: Plugging these values into our expression: \[ 6 - 2(-1 - 1) + 2(1) = 6 + 4 + 2 = 12 \] 7. **Conclusion**: Therefore, the maximum value of \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 + z_1|^2 \) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3 are complex number , such that |z_1|=2, |z_2|=3, |z_3|=4 , the maximum value |z_1-z_2|^(2) + |z_2-z_3|^2 + |z_3-z_1|^2 is : (a) 58 (b) 29 (c) 87 (d) none of these

Let z_1,z_2 and z_3 be three distinct complex numbers , satisfying |z_1|=|z_2|=|z_3|=1 find maximum value of| z1 - z2 |^2 + |z2-z3|^2 + |z3-z1|^2

If the complex number z is such that |z-1|le1 and |z-2|=1 find the maximum possible value |z|^(2)

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_1,z_2,z_3 are three points lying on the circle |z|=2 then the minimum value of the expression |z_1+z_2|^2+|z_2+z_3|^2+|z_3+z_1|^2=

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If z_1, z_2, z_3 are 3 distinct complex numbers such that 3/|z_2-z_3|-4/|z_3-z_1|=5/|z_1-z_2| then the value of 9/(z_2-z_3)+16/(z_3-z_1)+25/(z_1-z_2) equals

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1