Home
Class 12
MATHS
if A(z1),B(z2),C(z3),D(z4) lies on |z|=...

if `A(z_1),B(z_2),C(z_3),D(z_4)` lies on |z|=4 (taken in order) , where `z_1+z_2+z_3+z_4=0` then :

A

Max. area of quadrilateral ABCD=32

B

Max. area of quadrilateral ABCD=16

C

The triangle `DeltaABC` is right angled

D

The quadrilateral ABCD is rectangle

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3,z_4 be the vertices of a quadrilaterla taken in order such that z_1+z_2-z_2+z_3 and |z_1-z_3|=|z_2-z_4| then arg ((z_1-z_2)/(z_3-z_2))= (A) pi/2 (B) +- pi/2 (C) pi/3 (D) pi/6

If A (z_1), B (z_2) and C (z_3) are three points in the argand plane where |z_1 +z_2|=||z_1-z_2| and |(1-i)z_1+iz_3|=|z_1|+|z_3|-z_1| , where i = sqrt-1 then

If z_1 , lies in |z-3|<=4,z_2 on |z-1|+|z+1|=3 and A = |z_1-z_2| , then :

If z_1,z_2,z_3 are non zero non collinear complex number such that 2/z_1=1/z_2+ 1/z_3, then (A) ponts z_1,z_2,z_3 form and equilateral triangle (B) points z_1,z_2,z_3 lies on a circle (C) z_1,z_2,z_3 and origin are concylic (D) z_1+z_2+z_3=0

Show that if z_(1)z_(2)+z_(3)z_(4)=0 and z_(1)+z_(2)=0 ,then the complex numbers z_(1),z_(2),z_(3),z_(4) are concyclic.

If z_(1)z_(2),z_(3) and z_(4) taken in order vertices of a rhombus, then proves that Re((z_(3)-z_(1))/(z_(4)-z_(2))) = 0

Let A(z_(1)), B(z_(2)), C(z_(3) and D(z_(4)) be the vertices of a trepezium in an Argand plane such that AB||CD Let |z_(1)-z_(2)|=4, |z_(3),z_(4)|=10 and the diagonals AC and BD intersects at P . It is given that Arg((z_(4)-z_(2))/(z_(3)-z_(1)))=(pi)/2 and Arg((z_(3)-z_(2))/(z_(4)-z_(1)))=(pi)/4 Which of the following option(s) is/are correct?

Let A(z_(1)), B(z_(2)), C(z_(3) and D(z_(4)) be the vertices of a trepezium in an Argand plane such that AB||CD Let |z_(1)-z_(2)|=4, |z_(3),z_(4)|=10 and the diagonals AC and BD intersects at P . It is given that Arg((z_(4)-z_(2))/(z_(3)-z_(1)))=(pi)/2 and Arg((z_(3)-z_(2))/(z_(4)-z_(1)))=(pi)/4 Which of the following option(s) is/are incorrect?

Statement-1 : z_(1)^(2) + z_(2)^(2) +z_(3)^(2) +z_(4)^(2) =0 " where " z_(1) ,z_(2),z_(3) and z_(4) are the fourth roots of unity and Statement -2 : (1)^(1/4) = (cos0^(@) +isin0^(@))^(1/4)

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is