Home
Class 12
MATHS
If |z1|=1, |z2|=2, |z3|=3 and |9z1z2 + 4...

If `|z_1|=1, |z_2|=2, |z_3|=3` and `|9z_1z_2 + 4z_1z_3 + z_2z_3|=36`, then `|z_1+z_2+z_3|` is equal to _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |z_1 + z_2 + z_3| \) given the conditions \( |z_1| = 1 \), \( |z_2| = 2 \), \( |z_3| = 3 \), and \( |9z_1z_2 + 4z_1z_3 + z_2z_3| = 36 \). ### Step-by-Step Solution: 1. **Understanding the given moduli:** - We have \( |z_1| = 1 \), \( |z_2| = 2 \), and \( |z_3| = 3 \). 2. **Expressing the modulus of the given expression:** - We need to evaluate \( |9z_1z_2 + 4z_1z_3 + z_2z_3| \). - We know that \( |z_1 z_2| = |z_1| |z_2| = 1 \cdot 2 = 2 \). - Similarly, \( |z_1 z_3| = |z_1| |z_3| = 1 \cdot 3 = 3 \). - And \( |z_2 z_3| = |z_2| |z_3| = 2 \cdot 3 = 6 \). 3. **Finding the modulus of each term:** - Thus, we have: - \( |9z_1 z_2| = 9 |z_1 z_2| = 9 \cdot 2 = 18 \) - \( |4z_1 z_3| = 4 |z_1 z_3| = 4 \cdot 3 = 12 \) - \( |z_2 z_3| = 6 \) 4. **Applying the triangle inequality:** - By the triangle inequality, we can say: \[ |9z_1 z_2 + 4z_1 z_3 + z_2 z_3| \leq |9z_1 z_2| + |4z_1 z_3| + |z_2 z_3| = 18 + 12 + 6 = 36 \] - Since we are given that \( |9z_1 z_2 + 4z_1 z_3 + z_2 z_3| = 36 \), this means that the equality holds, which implies that the vectors \( 9z_1 z_2 \), \( 4z_1 z_3 \), and \( z_2 z_3 \) are collinear. 5. **Finding the modulus of the sum:** - We can express the equality as: \[ |9z_1 z_2 + 4z_1 z_3 + z_2 z_3| = |z_1 z_2 z_3| \cdot |9 \frac{z_1 z_2}{z_1 z_2 z_3} + 4 \frac{z_1 z_3}{z_1 z_2 z_3} + \frac{z_2 z_3}{z_1 z_2 z_3}| \] - This simplifies to: \[ |z_1 z_2 z_3| = |z_1| |z_2| |z_3| = 1 \cdot 2 \cdot 3 = 6 \] 6. **Final calculation:** - Therefore, we have: \[ |9z_1 z_2 + 4z_1 z_3 + z_2 z_3| = |z_1 z_2 z_3| \cdot |9 + 4 + 1| = 6 \cdot |z_1 + z_2 + z_3| \] - Setting this equal to 36 gives: \[ 6 |z_1 + z_2 + z_3| = 36 \] - Thus, we find: \[ |z_1 + z_2 + z_3| = \frac{36}{6} = 6 \] ### Conclusion: The value of \( |z_1 + z_2 + z_3| \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|2 Videos
  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1-1|<1 , |z_2-2|<2 , |z_3-3|<3 then |z_1+z_2+z_3|

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If 2z_1-3z_2 + z_3=0 , then z_1, z_2 and z_3 are represented by