Home
Class 12
MATHS
If A^(-1)=[(sin^(2)alpha, 0, 0),(0, sin^...

If `A^(-1)=[(sin^(2)alpha, 0, 0),(0, sin^(2)beta,0),(0, 0,sin^(2)gamma)] and B^(-1)=[(cos^(2)alpha, 0, 0),(0, cos^(2)beta,0),(0, 0,cos^(2)gamma)]` where `alpha, beta, gamma` are any real numbers and `C=(A^(-5)+B^(-5))+5A^(-1)B^(-1) (A^(-3)+B^(-3))+10A^(-2)B^(-2)(A^(-1)+B^(-1))` then find |C|.

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If A^(-1)=[(sin^2alpha,0,0),(0,sin^2 beta,0), (0,0,sin^2gamma)] and B^(-1)=[(cos^2alpha,0,0),(0,cos^2 beta,0), (0,0,cos^2gamma)] where alpha, beta, gamma are any real numbers and C=A^(-5)+B^(-5)+5A^(-1)B^(-1)(A^(-3) +B^(-3))+10 A^(-2)B^(-2)(A^(-1)+B^(-1)) then find |C|

If lim_(xrarroo) xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5. where alpha, beta, gamma are finite real numbers, then

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Determine the values of alpha, beta, gamma when [{:(0,2sinbeta,tan gamma),(cos alpha, sin beta,-tan gamma),(cos alpha, -sin beta, tan gamma):}] is orthogonal.

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alphagt0, betagt0, gammagt0, alpha+beta+gamma= pi show that sin^2alpha+sin^2beta-sin^2gamma =

If tan gamma=sec alpha sec beta+tan alpha tan beta, then cos2 gamma is necessarily (A) ge0 (B) le0 (C) lt0 (D) gt0