Home
Class 12
MATHS
if A=[a(ij)](2*2) where a(ij)={i+j , i!=...

if `A=[a_(ij)]_(2*2)` where `a_(ij)={i+j , i!=j` and `i^2-2j ,i=j}` then `A^-1` is equal to

A

`(1)/(9)[(0, 3),(3,1)]`

B

`(1)/(9)[(0,-3),(3,-1)]`

C

`(1)/(9)[(0,-3),(-3,-1)]`

D

`(1)/(3)[(0,3),(3,1)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

Show that : The determinant of a matrix A=([a_(i j)])_(5xx5) where a_(i j)+a_(j i)=0 for all i and j is zero.

A square matrix A=[a_(ij)] in which a_(ij)=0 for i!=j and [a]_(ij)=k (constant) for i=j is called a