Home
Class 12
MATHS
Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)]...

Let matrix `A=[(x,y,-z),(1,2,3),(1,1,2)]` where `x,y, z in N`. If det. (adj. (adj. A))`=2^(8)*3^(4)` then the number of such matrices A is :
[Note : adj. A denotes adjoint of square matrix A.]

A

220

B

45

C

55

D

110

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

Let matrix A=[[x,y,-z],[1,2,3],[1,1,2]] where x,y,zepsilonN . If det.(adj(adj.A))=2^8.(3^4) then the number of such matrices A is :

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

A, B and C are three square matrices of order 3 such that A= diag (x, y, z) , det (B)=4 and det (C)=2 , where x, y, z in I^(+) . If det (adj (adj (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

If A=[{:(,1,2),(,2,1):}] then adj A=

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=