Home
Class 12
MATHS
Let A=[(3,-5),(7,-12)] and B=[(12,-5),(7...

Let `A=[(3,-5),(7,-12)] and B=[(12,-5),(7,-3)]` bc two given matrices, then `(AB)^(-1)` is :

A

`[(1,0),(0,-1)]`

B

`[(1,0),(0,1)]`

C

`[(-1,0),(0,1)]`

D

`[(0,1),(1,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \((AB)^{-1}\) where \(A = \begin{pmatrix} 3 & -5 \\ 7 & -12 \end{pmatrix}\) and \(B = \begin{pmatrix} 12 & -5 \\ 7 & -3 \end{pmatrix}\), we will follow these steps: ### Step 1: Multiply Matrices A and B First, we need to calculate the product \(AB\). \[ AB = A \cdot B = \begin{pmatrix} 3 & -5 \\ 7 & -12 \end{pmatrix} \cdot \begin{pmatrix} 12 & -5 \\ 7 & -3 \end{pmatrix} \] To perform the multiplication, we will use the formula for matrix multiplication: \[ AB_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \] Calculating each element: - For the element at position (1,1): \[ AB_{11} = 3 \cdot 12 + (-5) \cdot 7 = 36 - 35 = 1 \] - For the element at position (1,2): \[ AB_{12} = 3 \cdot (-5) + (-5) \cdot (-3) = -15 + 15 = 0 \] - For the element at position (2,1): \[ AB_{21} = 7 \cdot 12 + (-12) \cdot 7 = 84 - 84 = 0 \] - For the element at position (2,2): \[ AB_{22} = 7 \cdot (-5) + (-12) \cdot (-3) = -35 + 36 = 1 \] Thus, the product \(AB\) is: \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Find the Inverse of AB Next, we need to find \((AB)^{-1}\). Since we have found that \(AB\) is the identity matrix \(I\): \[ AB = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] The inverse of the identity matrix is itself: \[ (AB)^{-1} = I^{-1} = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Answer Thus, the value of \((AB)^{-1}\) is: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

Let A=[(3, 2),( 7, 5)] and B=[(6, 7),( 8, 9)] . Find (A B)^(-1)

If A = [(1,2),(5,7)]and B = [(2,1),(3,4)] then find the order of AB.

Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N . The number of matrices B such that AB=BA , is equal to

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

Let A=[{:(-3,-7,-5),(2,4,3),(1,2,2):}] and B=[{:(a),(b),(1):}] If AB is a scalar multiple of B, then (a) 4a+7b+5=0 (b) a+b+2=0 (c) b-a=4 (d) a+3b=0

Let A=[(3,2,5),(4,1,3),(0,6,7)] Express A as sum of two matrices such that one is symmetric and the other is skew symmetric.