Home
Class 12
MATHS
If for the matrix A=[(costheta, 2sinthet...

If for the matrix `A=[(costheta, 2sintheta),(sintheta,costheta)],A^(-1)=A^(T)` then number of possible value(s) of `theta` in `[0, 2pi]` is :

A

2

B

3

C

1

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=l is true for

If A=[(costheta,sintheta),(-sintheta,costheta)] , then find the value of |A| .

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

Find the inverse of the matrix [(costheta ,sintheta) ,( -sintheta ,costheta )] .

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

Prove that (1+costheta-sin^(2)theta)/(sintheta(1+costheta))=cottheta