Home
Class 12
MATHS
If A=((1,2),(0,1)),P=((costheta, sinthet...

If `A=((1,2),(0,1)),P=((costheta, sintheta),(-sintheta, costheta)),Q=P^(T)AP`, find `PQ^(2014)P^(T)`: (a) `((1,2^(2014)),(0,1))` (b) `((1,4028),(0,1))` (c) `(P^(T))^(2013)A^(2014)P^(2013)` (d)`P^(T)A^(2014)P`

A

`((1,2^(2014)),(0,1))`

B

`((1,4028),(0,1))`

C

`(P^(T))^(2013)A^(2014)P^(2013)`

D

`P^(T)A^(2014)P`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow the steps outlined in the video transcript and derive the solution step by step. ### Step 1: Define the matrices We have: - \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \) - \( P = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \) ### Step 2: Compute \( Q \) We need to compute \( Q = P^T A P \). First, calculate \( P^T \): \[ P^T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] Now, compute \( P^T A \): \[ P^T A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & 2\cos \theta - \sin \theta \\ \sin \theta & 2\sin \theta + \cos \theta \end{pmatrix} \] Next, compute \( Q = P^T A P \): \[ Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & 2\cos \theta - \sin \theta \\ \sin \theta & 2\sin \theta + \cos \theta \end{pmatrix} \] Calculating this product: \[ Q = \begin{pmatrix} \cos^2 \theta + (-\sin \theta)(\sin \theta) & \cos \theta(2\cos \theta - \sin \theta) + (-\sin \theta)(2\sin \theta + \cos \theta) \\ \sin \theta(\cos \theta) + \cos \theta(-\sin \theta) & \sin \theta(2\cos \theta - \sin \theta) + \cos \theta(2\sin \theta + \cos \theta) \end{pmatrix} \] This simplifies to: \[ Q = \begin{pmatrix} \cos^2 \theta - \sin^2 \theta & 2\cos \theta \\ 0 & 1 \end{pmatrix} \] ### Step 3: Find \( PQ^{2014}P^T \) We need to compute \( PQ^{2014}P^T \). Using the property of matrix powers: \[ PQ^nP^T = P(P^TAP)^nP^T = P^TAP^T = A^n \] Thus: \[ PQ^{2014}P^T = P(P^TAP)^{2014}P^T = PA^{2014}P^T \] ### Step 4: Calculate \( A^{2014} \) To find \( A^{2014} \), we first find \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \] Next, we find \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \] From the pattern, we can conclude: \[ A^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} \] Thus: \[ A^{2014} = \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \] ### Step 5: Final computation Now substituting back: \[ PQ^{2014}P^T = A^{2014} = \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \] ### Conclusion The final answer is: \[ PQ^{2014}P^T = \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If tantheta =p/q , then the value of (p sintheta-q costheta)/(p sintheta+q costheta) is

If for the matrix A=[(costheta, 2sintheta),(sintheta,costheta)],A^(-1)=A^(T) then number of possible value(s) of theta in [0, 2pi] is :

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to (a) 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to (a) 1+x (b) 1-x (c) x (d) 1/x

If A=((p,q),(0,1)) , then show that A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(0,1))

If sectheta+tantheta=p , prove that sintheta=(p^2-1)/(p^2+1)

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sintheta+costheta=pa n dsectheta+cos e ctheta=q , show that q(p^2-1)=2pdot