Home
Class 12
MATHS
A^(3)-2A^(2)-A+2I=0 if A=...

`A^(3)-2A^(2)-A+2I=0` if `A=`

A

I

B

2I

C

`[(2,-1,2),(-1,0,0),(0,1,0)]`

D

`[(2,1,-2),(1,0,0),(0,1,0)]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix of order 3 and I is an ldentity matrix of order 3 such that A^(3) - 2A^(2) - A + 2l =0, then A is equal to

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-A^2+I=0

If A^(2) - 3 A + 2I = 0, then A is equal to

If a matrix A is such that 3A^3 +2A^2+5A+I= 0 , then A^(-1) is equal to

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

Solve the Equation x^2+(sqrt(3)-2sqrt(2) i)x-2sqrt(6)i=0 using the general epression for a quadratic equation.

Let A be a 3xx3 matrix satisfying A^3=0 , then which of the following statement(s) are true (a) |A^2+A+I|!=0 (b) |A^2-A+O|=0 (c) |A^2+A+I|=0 (d) |A^2-A+I|!=0

Find A^2-5A+6I , if A=[[2, 0, 1],[ 2, 1, 3],[ 1,-1, 0]]

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

Find the value of k if M=[(1, 2),(2, 3)] and M^(2)-kM-I_(2)=0 .