Home
Class 12
MATHS
Let A(n) and B(n) be square matrices of ...

Let `A_(n) and B_(n)` be square matrices of order 3, which are defined as :
`A_(n)=[a_(ij)] and B_(n)=[b_(ij)]` where `a_(ij)=(2i+j)/(3^(2n)) and b_(ij)=(3i-j)/(2^(2n))` for all `i` and `j, 1 le i, j le 3`.
If `l=lim_(n to oo) Tr. (3A_(1)+3^(2)A_(2)+3^(3)A_(3)+........+3^(n)A_(n)) and m=lim_(n to oo) Tr. (2B_(1)+2^(2)B_(2)+2^(3)B_(3)+.....+2^(n)B_(n))`, then find the value of `((l+m))/(3)`
[Note : Tr (P) denotes the trace of matrix P.]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limits \( l \) and \( m \) based on the given matrices \( A_n \) and \( B_n \), and then compute \( \frac{l + m}{3} \). ### Step 1: Define the matrices \( A_n \) and \( B_n \) Given: \[ A_{ij} = \frac{2i + j}{3^{2n}} \quad \text{and} \quad B_{ij} = \frac{3i - j}{2^{2n}} \] For \( n = 1, 2, 3 \), we can write the matrices \( A_n \) and \( B_n \) explicitly. #### Matrix \( A_n \): \[ A_n = \frac{1}{3^{2n}} \begin{bmatrix} 2 \cdot 1 + 1 & 2 \cdot 1 + 2 & 2 \cdot 1 + 3 \\ 2 \cdot 2 + 1 & 2 \cdot 2 + 2 & 2 \cdot 2 + 3 \\ 2 \cdot 3 + 1 & 2 \cdot 3 + 2 & 2 \cdot 3 + 3 \end{bmatrix} = \frac{1}{3^{2n}} \begin{bmatrix} 3 & 4 & 5 \\ 5 & 6 & 7 \\ 7 & 8 & 9 \end{bmatrix} \] #### Matrix \( B_n \): \[ B_n = \frac{1}{2^{2n}} \begin{bmatrix} 3 \cdot 1 - 1 & 3 \cdot 1 - 2 & 3 \cdot 1 - 3 \\ 3 \cdot 2 - 1 & 3 \cdot 2 - 2 & 3 \cdot 2 - 3 \\ 3 \cdot 3 - 1 & 3 \cdot 3 - 2 & 3 \cdot 3 - 3 \end{bmatrix} = \frac{1}{2^{2n}} \begin{bmatrix} 2 & 1 & 0 \\ 5 & 4 & 3 \\ 8 & 7 & 6 \end{bmatrix} \] ### Step 2: Calculate \( l \) We need to compute: \[ l = \lim_{n \to \infty} \text{Tr}(3A_1 + 3^2 A_2 + 3^3 A_3 + \ldots + 3^n A_n) \] The trace of a matrix is the sum of its diagonal elements. The diagonal elements of \( A_n \) are: \[ \text{Diagonal of } A_n = \left( \frac{3}{3^{2n}}, \frac{6}{3^{2n}}, \frac{9}{3^{2n}} \right) = \frac{1}{3^{2n}}(3 + 6 + 9) = \frac{18}{3^{2n}} \] Thus, the trace of \( A_n \): \[ \text{Tr}(A_n) = \frac{18}{3^{2n}} \] Now, we compute: \[ l = \lim_{n \to \infty} \text{Tr}(3A_1 + 3^2 A_2 + \ldots + 3^n A_n) \] \[ = \lim_{n \to \infty} \left( 3 \cdot \frac{18}{3^{2 \cdot 1}} + 3^2 \cdot \frac{18}{3^{2 \cdot 2}} + \ldots + 3^n \cdot \frac{18}{3^{2n}} \right) \] \[ = \lim_{n \to \infty} 18 \left( \frac{3}{9} + \frac{9}{27} + \ldots + \frac{3^n}{3^{2n}} \right) \] This is a geometric series with the first term \( \frac{1}{3} \) and ratio \( \frac{1}{3} \): \[ = 18 \cdot \frac{\frac{1}{3}}{1 - \frac{1}{3}} = 18 \cdot \frac{1/3}{2/3} = 18 \cdot \frac{1}{2} = 9 \] ### Step 3: Calculate \( m \) Now we compute: \[ m = \lim_{n \to \infty} \text{Tr}(2B_1 + 2^2 B_2 + 2^3 B_3 + \ldots + 2^n B_n) \] The diagonal elements of \( B_n \) are: \[ \text{Diagonal of } B_n = \left( \frac{2}{2^{2n}}, \frac{4}{2^{2n}}, \frac{6}{2^{2n}} \right) = \frac{12}{2^{2n}} \] Thus, the trace of \( B_n \): \[ \text{Tr}(B_n) = \frac{12}{2^{2n}} \] Now, we compute: \[ m = \lim_{n \to \infty} \text{Tr}(2B_1 + 2^2 B_2 + \ldots + 2^n B_n) \] \[ = \lim_{n \to \infty} \left( 2 \cdot \frac{12}{4} + 2^2 \cdot \frac{12}{16} + \ldots + 2^n \cdot \frac{12}{4^n} \right) \] \[ = \lim_{n \to \infty} 12 \left( \frac{2}{4} + \frac{4}{16} + \ldots + \frac{2^n}{4^n} \right) \] This is a geometric series with the first term \( \frac{1}{2} \) and ratio \( \frac{1}{2} \): \[ = 12 \cdot \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 12 \cdot 1 = 12 \] ### Step 4: Compute \( \frac{l + m}{3} \) Now we have \( l = 9 \) and \( m = 12 \): \[ \frac{l + m}{3} = \frac{9 + 12}{3} = \frac{21}{3} = 7 \] ### Final Answer \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Matching Type Problems|4 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If a square matix a of order three is defined A=[a_("ij")] where a_("ij")=s g n(i-j) , then prove that A is skew-symmetric matrix.

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is

If a_(1)=1 and a_(n)+1=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

The terms of a sequence are defined by a_(n)=3a_(n-1)-a_(n-2) for n gt 2 . What is the value of a_(5) if a_(1)=4 and a_(2)=3 ?

The square matrix A=[a_(ij)" given by "a_(ij)=(i-j)^3 , is a

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to