Home
Class 12
MATHS
The value of [ ( 2009! + 2006!)/(2008! ...

The value of ` [ ( 2009! + 2006!)/(2008! + 2007!)] ` is `K`. Then value of `K/1004`
(` [ *] ` denotes greatest integer function.)

A

3

B

2

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ K = \frac{2009! + 2006!}{2008! + 2007!} \] ### Step 1: Factor out common terms in the numerator and denominator In the numerator, we can factor out \(2006!\): \[ 2009! + 2006! = 2006!(2009 \times 2008 + 1) \] In the denominator, we can factor out \(2007!\): \[ 2008! + 2007! = 2007!(2008 + 1) = 2007! \times 2009 \] ### Step 2: Rewrite the expression for K Now we can rewrite \(K\) as: \[ K = \frac{2006!(2009 \times 2008 + 1)}{2007! \times 2009} \] ### Step 3: Simplify the expression Since \(2007! = 2007 \times 2006!\), we can substitute this into the expression for \(K\): \[ K = \frac{2006!(2009 \times 2008 + 1)}{2007 \times 2006! \times 2009} \] The \(2006!\) cancels out: \[ K = \frac{2009 \times 2008 + 1}{2007 \times 2009} \] ### Step 4: Further simplify K Now we can simplify \(K\): \[ K = \frac{2009 \times 2008}{2007 \times 2009} + \frac{1}{2007 \times 2009} \] The \(2009\) cancels out: \[ K = \frac{2008}{2007} + \frac{1}{2007 \times 2009} \] ### Step 5: Calculate the value of K The first term simplifies to: \[ \frac{2008}{2007} \approx 1.0005 \] The second term \(\frac{1}{2007 \times 2009}\) is a very small number, so we can approximate \(K\) as: \[ K \approx 1.0005 \] ### Step 6: Find the greatest integer function of K Since \(K\) is slightly more than 1, the greatest integer function \([K]\) is: \[ [K] = 1 \] ### Step 7: Calculate \(\frac{K}{1004}\) Now we need to find: \[ \frac{K}{1004} = \frac{1}{1004} \approx 0.000996 \] ### Step 8: Apply the greatest integer function Since \(\frac{K}{1004}\) is less than 1, the greatest integer function is: \[ \left[\frac{K}{1004}\right] = 0 \] ### Final Result Thus, the value of \(\left[\frac{K}{1004}\right]\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • PERMUTATION AND COMBINATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^100 [tan^-1 x]dx is, (where [*] denotes greatest integer function)

Draw the graph of f(x)=x+[x], [.] denotes greatest integer function.

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

draw the graph of f(x)=x+[x] , [.] denotes greatest integer function.

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of [ ( 2009! + 2006!)/(2008! + 2007!)] = ( [ *] denotes greatest integer function.)

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Draw the graph of y=[|x|] , where [.] denotes the greatest integer function.

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is