Home
Class 12
MATHS
The values of 'x' satisfies the equation...

The values of 'x' satisfies the equation `(1-2(logx^(2))^(2))/(logx-2(logx)^(2))=1` (is/are):
(where log is logarithm to the base 10)

A

`(1)/(sqrt(10))`

B

`(1)/(sqrt(20))`

C

`root(3)(10)`

D

`sqrt(10)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation (1-2(logx^(2))^(2))/(logx-2(logx)^(2))=1

Solve the equation (1-2(2logx)^(2))/(logx-2(logx)^(2))=1

Solve the equation: (log(x+1))/(logx)=2

int(logx/(1+logx)^2)dx

Integrate the functions ((1+logx)^2)/x

The solution set of the equation x^(log_x(1-x)^2)=9 is

int(dx)/(x.logx.log(logx))=

Solve 4^(log_(2)logx)=logx-(logx)^(2)+1 (base is e).

Solve ((1)/(2))^(logx^(2))+2gt3.2^(log(-x))

Integrate the functions (e^(5logx)-e^(4logx))/(e^(2logx)-e^(2logx))