Home
Class 12
MATHS
Let A = MINIMUM (x^2-2x+7),x in R and B...

Let `A = MINIMUM (x^2-2x+7),x in R and B = MINIMUM ( x^2-2x+7),x in [2,oo),` then: `(log)_((B-A))(A+B)` is not defined `A+B=13` `(log)_((2B-A))A<1` (d) `(log)_((2A-B))A >1`

A

`log_((B-A))(A+B)` is not defined

B

`A+B=13`

C

`log_((2B-A))A lt 1`

D

`log_((2A-B))A gt 1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let A = MINIMUM (x^2-2x+7),x in R and B = MINIMUM ( x^2-2x+7),x in [2,oo), then: (log)_((B-A))(A+B) is not defined A+B=13 (log)_((2B-A))A 1

Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo), then:

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Let f(x)=2x-tan^-1 x- ln(x+sqrt(1+x^2)); x in R, then

If A = x^2+1/x^2 , B = x-1/x then minimum value of A/B is

If minimum of f(x)=(a)/(x)+bx at x=2 is 2, then (a, b) -= ….

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then x=(1)/(7) Reason (R ) : If |x| lt 1 , then x+(x^(2))/(2)+(x^(3))/(3)+…..oo=log((1)/(1-x))