Home
Class 12
MATHS
Let g(x)= ax + b , where a lt 0 and g...

Let `g(x)= ax + b ` , where ` a lt 0 ` and g is defined from [1,3] onto [0,2] then the value of ` cot ( cos^(-1) (|sin x | + |cos x|) + sin^(-1)(-|cos x | - |sinx|)) ` is equal to :

A

`g(1)`

B

`g(2)`

C

`g(3)`

D

`g(1) + g(3) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will break it down step by step. ### Step 1: Understanding the Function g(x) We are given that \( g(x) = ax + b \) where \( a < 0 \) and \( g \) is defined from the interval \([1, 3]\) onto \([0, 2]\). ### Step 2: Setting Up the Equations From the information provided: 1. \( g(1) = 2 \) 2. \( g(3) = 0 \) Using these conditions, we can set up the following equations: - For \( g(1) = 2 \): \[ a(1) + b = 2 \quad \text{(Equation 1)} \] - For \( g(3) = 0 \): \[ a(3) + b = 0 \quad \text{(Equation 2)} \] ### Step 3: Solving the Equations Now we have two equations: 1. \( a + b = 2 \) 2. \( 3a + b = 0 \) We can subtract Equation 1 from Equation 2: \[ (3a + b) - (a + b) = 0 - 2 \] This simplifies to: \[ 2a = -2 \implies a = -1 \] Now we substitute \( a = -1 \) back into Equation 1: \[ -1 + b = 2 \implies b = 3 \] ### Step 4: Formulating g(x) Now we have determined the values of \( a \) and \( b \): \[ g(x) = -x + 3 \] ### Step 5: Evaluating the Given Expression Next, we need to evaluate: \[ \cot\left(\cos^{-1}(|\sin x| + |\cos x|) + \sin^{-1}(-|\cos x| - |\sin x|)\right) \] ### Step 6: Finding the Range of \( |\sin x| + |\cos x| \) The maximum value of \( |\sin x| + |\cos x| \) occurs when \( |\sin x| = |\cos x| = \frac{1}{\sqrt{2}} \): \[ |\sin x| + |\cos x| \leq \sqrt{2} \] The minimum value occurs when either \( |\sin x| \) or \( |\cos x| \) is 0, giving a minimum of 1. ### Step 7: Evaluating the Inverse Functions 1. The maximum value of \( |\sin x| + |\cos x| \) is \( \sqrt{2} \) and the minimum is \( 1 \). 2. Therefore, \( \cos^{-1}(|\sin x| + |\cos x|) \) will range from \( \cos^{-1}(1) = 0 \) to \( \cos^{-1}(\sqrt{2}) \) (not applicable since \( \sqrt{2} > 1 \)). 3. The term \( \sin^{-1}(-|\cos x| - |\sin x|) \) will be evaluated based on the range of \( |\sin x| + |\cos x| \). ### Step 8: Final Calculation We take the minimum value for simplicity: \[ \cot\left(0 + \sin^{-1}(-1)\right) = \cot\left(-\frac{\pi}{2}\right) = 0 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|12 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|4 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Write the value of cos(sin^(-1)x+cos^(-1)x) , |x|lt=1 .

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Let f(x) = min ( tan^(-1) x, cot^(-1)x) " and " h ( x) = f ( x + 2) - pi //3 ". Let " x_(1), x_(2) ( "where " x_(1) lt x_(2)) be the integers in the range of h (x) , then the value of ( cos^(-1) ( cos x_(1)) + sin ^(-1) ( sin x_2)) is equal to

If cos(sin^(-1)'2/5 + cos^(-1)x) = 0 , then x is equal to

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1