Home
Class 12
MATHS
The points A(0, 0), B(cos alpha, sin alp...

The points `A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta)` are the vertices of a right angled triangle if :

A

`sin((alpha-beta)/(2))=(1)/(sqrt(2))`

B

`cos((alpha-beta)/(2))=-(1)/(sqrt(2))`

C

`cos((alpha-beta)/(2))=(1)/(sqrt(2))`

D

`sin((alpha-beta)/(2))=-(1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|4 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If A(cos alpha,sin alpha), B(cos beta, sin beta), C(cosgamma,sin gamma) are vertices of Delta ABC having ortho centre at origin then find the value of sumcos(alpha-beta).

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If cos(alpha + beta)=0 , then sin (alpha-beta) can be reduced to

Given that sin alpha = (sqrt(3))/(2) and cos beta = 0 , then the value of beta - alpha is

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan beta is

cos(alpha+beta)+sin(alpha-beta)=0"and"tanbeta=1/2009 then value of tan3α

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is