Home
Class 12
MATHS
If the line y=2-x is tangent to the circ...

If the line `y=2-x` is tangent to the circle S at the point P(1, 1) and circle S is orthogonal to the circle `x^(2)+y^(2)+2x+2y-2=0`, then find the length of tangent drawn from the point (2, 2) to circle S.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VK JAISWAL ENGLISH|Exercise Exercise - 3 : Comprehension Type Problems|10 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|16 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

If the line y=2-x is tangent to the circle S at the point P(1,1) and circle S is orthogonal to the circle x^2+y^2+2x+2y-2=0 then find the length of tangent drawn from the point (2,2) to the circle S

The line 2x-y+1=0 is tangent to the circle at the point (2, 5) and the center of the circle lies on x-2y=4 . Then find the radius of the circle.

The line 2x-y+1=0 is tangent to the circle at the point (2, 5) and the centre of the circle lies on x-2y=4. The square of the radius of the circle is

If the tangents are drawn to the circle x^2+y^2=12 at the point where it meets the circle x^2+y^2-5x+3y-2=0, then find the point of intersection of these tangents.

Find the length of the tangents drawn from the point (3,-4) to the circle 2x^(2)+2y^(2)-7x-9y-13=0 .

The line 2x - y + 1 = 0 is tangent to the circle at the point (2,5) and the centre of the circles lies on x-2y = 4. The radius of the circle is :

The line 5x - y = 3 is a tangent to a circle at the point (2, 7) and its centre is on theline x + 2y = 19 . Find the equation of the circle.

Tangents are drawn to the circle x^2+y^2=12 at the points where it is met by the circle x^2+y^2-5x+3y-2=0 . Find the point of intersection of these tangents.

Tangents are drawn to the circle x^(2)+y^(2)=16 at the points where it intersects the circle x^(2)+y^(2)-6x-8y-8=0 , then the point of intersection of these tangents is

If the length of tangent drawn from the point (5,3) to the circle x^2+y^2+2x+ky+17=0 is 7, then k= ?