Home
Class 12
MATHS
Let tangents at P and Q to curve y^(2)-...

Let tangents at P and Q to curve `y^(2)-4x-2y+5=0` intersect at T. If S(2, 1) is a point such that `(SP)(SQ)=16`, then the length ST is equal to :

A

3

B

4

C

5

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|1 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • PERMUTATION AND COMBINATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If PSQ is a focal chord of the ellipse 16x^(2)+25y^(2)=400 such that SP=16, then the length SQ is

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .

Tangents drawn to circle (x-1)^2 +(y -1)^2= 5 at point P meets the line 2x +y+ 6= 0 at Q on the x axis. Length PQ is equal to

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

Let tangent PQ and PR are drawn from the point P(-2, 4) to the parabola y^(2)=4x . If S is the focus of the parabola y^(2)=4x , then the value (in units) of RS+SQ is equal to

Tangents are drawn to the circle x^(2)+y^(2)=16 at the points where it intersects the circle x^(2)+y^(2)-6x-8y-8=0 , then the point of intersection of these tangents is

A variable tangent to the circle x^(2)+y^(2)=1 intersects the ellipse (x^(2))/(4)+(y^(2))/(2)=1 at point P and Q. The lous of the point of the intersection of tangents to the ellipse at P and Q is another ellipse. Then find its eccentricity.

If the tangent at a point P with parameter t , on the curve x=4t^2+3 , y=8t^3-1 t in R meets the curve again at a point Q, then the coordinates of Q are

If the tangent at a point P with parameter t , on the curve x=4t^2+3 , y=8t^3-1 t in R meets the curve again at a point Q, then the coordinates of Q are