Home
Class 12
MATHS
Abscissa of two points P and Q on parabo...

Abscissa of two points P and Q on parabola `y^(2)=8x` are roots of equation `x^(2)-17x+11=0`. Let Tangents at P and Q meet at point T, then distance of T from the focus of parabola is :

A

7

B

6

C

5

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|1 Videos
  • PARABOLA

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|2 Videos
  • MATRICES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • PERMUTATION AND COMBINATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

Consider the parabola y^(2)=8x, if the normal at a point P on the parabola meets it again at a point Q, then the least distance of Q from the tangent at the vertex of the parabola is

Consider the parabola y^(2)=8x, if the normal at a point P on the parabola meets it again at a point Q, then the least distance of Q from the tangent at the vertex of the parabola is

The distance of two points P and Q on the parabola y^(2) = 4ax from the focus S are 3 and 12 respectively. The distance of the point of intersection of the tangents at P and Q from the focus S is

If y_(1),y_(2) are the ordinates of two points P and Q on the parabola and y_(3) is the ordinate of the intersection of tangents at P and Q, then

If the tangent at P to the parabola y^(2) =7x is parallel to 6y -x + 11 =0 then square of the distance of P from the vertex of the parabola is _______ .

The ordinates of points P and Q on the parabola y^2=12x are in the ration 1:2 . Find the locus of the point of intersection of the normals to the parabola at P and Q.

If the distances of two points P and Q from the focus of a parabola y^2=4x are 4 and 9,respectively, then the distance of the point of intersection of tangents at P and Q from the focus is

Normals of parabola y^(2)=4x at P and Q meets at R(x_(2),0) and tangents at P and Q meets at T(x_(1),0) . If x_(2)=3 , then find the area of quadrilateral PTQR.

A normal drawn at a point P on the parabola y^2 = 4ax meets the curve again at Q. The least distance of Q from the axis of the parabola, is

A normal drawn at a point P on the parabola y^2 = 4ax meets the curve again at Q. The least distance of Q from the axis of the parabola, is