Home
Class 12
MATHS
If y = mx + c be a tangent to the hyperb...

If `y = mx + c` be a tangent to the hyperbola `x^2/lambda^2-y^2/(lambda^3+lambda^2+lambda)^2 = 1, (lambda!=0),` then minimum value of 16m^2

A

0

B

1

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \(16m^2\) given that the line \(y = mx + c\) is a tangent to the hyperbola \[ \frac{x^2}{\lambda^2} - \frac{y^2}{(\lambda^3 + \lambda^2 + \lambda)^2} = 1 \] where \(\lambda \neq 0\). ### Step-by-Step Solution: 1. **Identify Parameters of the Hyperbola:** The hyperbola can be represented in the standard form where \(a^2 = \lambda^2\) and \(b^2 = (\lambda^3 + \lambda^2 + \lambda)^2\). 2. **Condition for Tangency:** For the line \(y = mx + c\) to be a tangent to the hyperbola, the condition of tangency must hold: \[ c^2 = a^2 m^2 - b^2 \] Substituting the values of \(a^2\) and \(b^2\): \[ c^2 = \lambda^2 m^2 - (\lambda^3 + \lambda^2 + \lambda)^2 \] 3. **Rearranging the Condition:** Rearranging gives: \[ c^2 = \lambda^2 m^2 - (\lambda^3 + \lambda^2 + \lambda)^2 \] Since \(c^2\) must be non-negative, we have: \[ \lambda^2 m^2 - (\lambda^3 + \lambda^2 + \lambda)^2 \geq 0 \] This implies: \[ \lambda^2 m^2 \geq (\lambda^3 + \lambda^2 + \lambda)^2 \] 4. **Solving for \(m^2\):** Dividing both sides by \(\lambda^2\) (since \(\lambda \neq 0\)): \[ m^2 \geq \frac{(\lambda^3 + \lambda^2 + \lambda)^2}{\lambda^2} \] Simplifying the right-hand side: \[ m^2 \geq \left(\lambda + 1 + \frac{1}{\lambda}\right)^2 \] 5. **Finding the Minimum Value:** Let \(f(\lambda) = \lambda + 1 + \frac{1}{\lambda}\). To minimize \(f(\lambda)\), we can use calculus or AM-GM inequality. The minimum occurs when \(\lambda = 1\): \[ f(1) = 1 + 1 + 1 = 3 \] Thus, \[ m^2 \geq 3^2 = 9 \] 6. **Calculating \(16m^2\):** Therefore, \[ 16m^2 \geq 16 \times 9 = 144 \] 7. **Final Result:** The minimum value of \(16m^2\) is \(144\). ### Conclusion: The minimum value of \(16m^2\) is \(144\).
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|36 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos

Similar Questions

Explore conceptually related problems

If the line y=2x+lambda be a tangent to the hyperbola 36x^(2)-25y^(2)=3600 , then lambda is equal to

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

Let alpha and beta be the values of x obtained form the equation lambda^(2) (x^(2)-x) + 2lambdax +3 =0 and if lambda_(1),lambda_(2) be the two values of lambda for which alpha and beta are connected by the relation alpha/beta + beta/alpha = 4/3 . then find the value of (lambda_(1)^(2))/(lambda_(2)) + (lambda_(2)^(2))/(lambda_(1)) and (lambda_(1)^(2))/lambda_(2)^(2) + (lambda_(2)^(2))/(lambda_(1)^(2))

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then lambda =

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lambdaz = lambda^2 have no solution then value of lambda is

If f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda) has a period = pi/2 then find the value of lambda

If the ellipse x^(2)+lambda^(2)y^(2)=lambda^(2)a^(2) , lambda^(2) gt1 is confocal with the hyperbola x^(2)-y^(2)=a^(2) , then

2x^2 +2y^2 +4 lambda x+lambda =0 represents a circle for

A line of slope lambda(0 < lambda < 1) touches the parabola y+3x^2=0 at Pdot If S is the focus and M is the foot of the perpendicular of directrix from P , then tan/_M P S equals (a) 2lambda (b) (2lambda)/(-1+lambda^2) (c) (1-lambda^2)/(1+lambda^2) (d) none of these