Home
Class 12
MATHS
A normal to the hyperbola (x^2)/4-(y^2)/...

A normal to the hyperbola `(x^2)/4-(y^2)/1=1` has equal intercepts on the positive x- and y-axis. If this normal touches the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` , then `a^2+b^2` is equal to 5 (b) 25 (c) 16 (d) none of these

A

5

B

25

C

16

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|36 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (a) 1/(a^2e^2) (b) a^2e^2 (c) b^2e^2 (d) none of these

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (A) 1/(a^2e^2) (B) a^2e^2 (C) b^2e^2 (D) none of these

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the positive end of the latus rectum.

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 is (5)/(4) , then b^(2) is equal to