Home
Class 12
MATHS
A circle cuts the rectangular hyperbola...

A circle cuts the rectangular hyperbola `xy=1` in the points `(x_(r),y_(r)), r=1,2,3,4`.
Prove that `x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=1`

A

`y_(1)y_(2)y_(3)y_(4)=1`

B

`x_(1)x_(2)x_(3)x_(4)=`

C

`x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=-1`

D

`y_(1)y_(2)y_(3)y_(4)=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|36 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos

Similar Questions

Explore conceptually related problems

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

If the circle x^(2)+y^(2)=r^(2) intersects the hyperbola xy=c^(2) in four points (x_(i),y_(i)) for i=1,2,3 and 4 then y_(1)+y_(2)+y_(3)+y_(4)=

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

If y=log (1+ sin x), prove that y_(4)+y_(3)y_(1)+y_(2)^(2)=0 .

If y=log (1+ sin x), prove that y_(4)+y_(3)y_(1)+y_(2)^(2)=0 .

If the hyperbola xy=c^(2) intersects the circle x^(2)+y^(2)=a^(2)" is four points "P(x_(1),y_(1)), Q(x_(2),y_(2)), R(x_(3),y_(3)) and S(x_(4),y_(4)) then show that (i) x_(1)+x_(2)+x_(3)+x_(4)=0 (ii) y_(1)+y_(2)+y_(3)+y_(4)=0 (iii) x_(1)x_(2)x_(3)x_(4)=c^(4) (iv) y_(1)y_(2)y_(3)y_(4)=c^(4)

An equilateral triangle has each of its sides of length 4 cm. If (x_(r),y_(r)) (r=1,2,3) are its vertices the value of |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^2

A , r = 1 , 2, 3 ….., n are n points on the parabola y^(2)=4x in the first quadrant . If A_(r) = (x_(r),y_(r)) where x_(1),x_(2),….x_(n) are in G.P and x_(1)=1,x_(2)=2 then y_(n) is equal to

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0