Home
Class 12
MATHS
Smallest positive x satisfying the equat...

Smallest positive x satisfying the equation ` cos^(3) 3x + cos^(3) 5x = 8 cos^(3) 4x * cos^(3) x ` is :

A

` 15^(@) `

B

` 18^(@) `

C

` 22.5^(@) `

D

` 30^(@) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^3(3x) + \cos^3(5x) = 8 \cos^3(4x) \cos^3(x) \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \cos^3(3x) + \cos^3(5x) = 8 \cos^3(4x) \cos^3(x) \] ### Step 2: Use the Identity for Cosine We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \cos(3x) \) and \( b = \cos(5x) \). Thus, we can rewrite the left-hand side: \[ \cos^3(3x) + \cos^3(5x) = (\cos(3x) + \cos(5x))(\cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x)) \] ### Step 3: Simplify the Right-Hand Side The right-hand side can be expressed as: \[ 8 \cos^3(4x) \cos^3(x) = 2 \cdot 4 \cos^3(4x) \cos^3(x) \] We can rewrite \( 2 \cos(4x) \cos(x) \) using the identity: \[ 2 \cos(A) \cos(B) = \cos(A + B) + \cos(A - B) \] Thus: \[ 2 \cos(4x) \cos(x) = \cos(5x) + \cos(3x) \] ### Step 4: Set Up the Equation Equating both sides gives us: \[ (\cos(3x) + \cos(5x))(\cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x)) = \cos(5x) + \cos(3x) \] ### Step 5: Factor the Equation We can factor out \( \cos(3x) + \cos(5x) \): \[ \cos(3x) + \cos(5x) \left( \cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x) - 1 \right) = 0 \] ### Step 6: Solve for Zero This gives us two cases to solve: 1. \( \cos(3x) + \cos(5x) = 0 \) 2. \( \cos^2(3x) - \cos(3x)\cos(5x) + \cos^2(5x) - 1 = 0 \) ### Step 7: Solve Each Case **Case 1:** \[ \cos(3x) + \cos(5x) = 0 \implies \cos(5x) = -\cos(3x) \] Using the cosine addition formula: \[ \cos(5x) = -\cos(3x) \implies 5x = (2n + 1)\frac{\pi}{2} - 3x \] This simplifies to: \[ 8x = (2n + 1)\frac{\pi}{2} \implies x = \frac{(2n + 1)\pi}{16} \] **Case 2:** This case is more complex and requires solving a quadratic in terms of \( \cos(3x) \) and \( \cos(5x) \). ### Step 8: Find the Smallest Positive Solution From Case 1, we can find the smallest positive \( x \): - For \( n = 0 \): \( x = \frac{\pi}{16} \) - For \( n = 1 \): \( x = \frac{3\pi}{16} \) - For \( n = 2 \): \( x = \frac{5\pi}{16} \) Converting \( \frac{\pi}{16} \) to degrees: \[ x = \frac{180}{16} = 11.25^\circ \] ### Final Step: Check Other Cases We also check for \( \cos(4x) = 0 \) and \( \cos(x) = 0 \) to find additional values: - \( \cos(x) = 0 \) gives \( x = 90^\circ \) - \( \cos(4x) = 0 \) gives \( x = 22.5^\circ \) ### Conclusion The smallest positive \( x \) satisfying the equation is: \[ \boxed{18^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

Samllest positive angle satisfying the equation cos^(2)x+cos^(2) 2x+cos^(2)3x=1 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) = 0 is equal to

Solve the equation 4 cos x - 3 sec x = tan x .

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

Prove that cos ^(3) x sin ^(2) x = (1)/(16) (2cos x - cos 3x - cos 5x).

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is