Home
Class 12
MATHS
If alpha and beta are 2 distinct ro...

If ` alpha ` and ` beta ` are 2 distinct roots of equation ` a cos theta + b sin theta = C ` then ` cos( alpha + beta ) = `

A

` (2 ab)/(a^(2)+ b^(2))`

B

` (2 ab)/(a^(2) - b^(2))`

C

` (a^(2) + b^(2))/(a^(2) - b^(2))`

D

` (a^(2) - b^(2))/(a^(2) + b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(\alpha + \beta) \) given that \( \alpha \) and \( \beta \) are distinct roots of the equation \( a \cos \theta + b \sin \theta = C \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a \cos \theta + b \sin \theta = C \] 2. **Rearrange the equation:** \[ a \cos \theta = C - b \sin \theta \] 3. **Square both sides:** \[ a^2 \cos^2 \theta = (C - b \sin \theta)^2 \] Expanding the right side gives: \[ a^2 \cos^2 \theta = C^2 - 2bC \sin \theta + b^2 \sin^2 \theta \] 4. **Substitute \( \cos^2 \theta = 1 - \sin^2 \theta \):** \[ a^2 (1 - \sin^2 \theta) = C^2 - 2bC \sin \theta + b^2 \sin^2 \theta \] This simplifies to: \[ a^2 - a^2 \sin^2 \theta = C^2 - 2bC \sin \theta + b^2 \sin^2 \theta \] 5. **Rearranging gives:** \[ (a^2 + b^2) \sin^2 \theta - 2bC \sin \theta + (C^2 - a^2) = 0 \] This is a quadratic equation in \( \sin \theta \). 6. **Identify the coefficients:** Let \( P = a^2 + b^2 \), \( Q = -2bC \), and \( R = C^2 - a^2 \). 7. **Use the product of roots formula:** The product of the roots \( \sin \alpha \sin \beta \) is given by: \[ \sin \alpha \sin \beta = \frac{R}{P} = \frac{C^2 - a^2}{a^2 + b^2} \] 8. **Now, find \( \cos \alpha \cos \beta \):** From the original equation, rearranging gives: \[ b \sin \theta = C - a \cos \theta \] Squaring both sides gives: \[ b^2 \sin^2 \theta = (C - a \cos \theta)^2 \] Expanding this yields: \[ b^2 \sin^2 \theta = C^2 - 2aC \cos \theta + a^2 \cos^2 \theta \] 9. **Substituting \( \sin^2 \theta = 1 - \cos^2 \theta \):** \[ b^2 (1 - \cos^2 \theta) = C^2 - 2aC \cos \theta + a^2 \cos^2 \theta \] Rearranging gives: \[ (a^2 + b^2) \cos^2 \theta - 2aC \cos \theta + (C^2 - b^2) = 0 \] 10. **Again, use the product of roots formula:** The product of the roots \( \cos \alpha \cos \beta \) is given by: \[ \cos \alpha \cos \beta = \frac{C^2 - b^2}{a^2 + b^2} \] 11. **Now, apply the cosine addition formula:** \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] 12. **Substituting the values:** \[ \cos(\alpha + \beta) = \frac{C^2 - b^2}{a^2 + b^2} - \frac{C^2 - a^2}{a^2 + b^2} \] 13. **Combine the fractions:** \[ \cos(\alpha + \beta) = \frac{(C^2 - b^2) - (C^2 - a^2)}{a^2 + b^2} = \frac{a^2 - b^2}{a^2 + b^2} \] ### Final Answer: \[ \cos(\alpha + \beta) = \frac{a^2 - b^2}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are distinct roots of acostheta+b sintheta=c , prove that sin(alpha+beta)=(2a b)/(a^2+b^2)

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

If alpha "and " beta be two distinct real numbers such that (alpha-beta) ne 2 n pi for any integer n satisfying the equations a cos theta + b sin theta =c then prove that (i) "cos " (alpha+ beta) =(a^(2) -b^(2))/(a^(2) +b^(2)) " "(ii) "sin " (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha, beta in C are distinct roots of the equation x^2+1=0 then alpha^(101)+beta^(107) is equal to