Home
Class 12
MATHS
In a triangle ABC the expression acosBc...

In a triangle ABC the expression `acosBcosC+bcosC cosA+c cosA cosB` equals to :

A

`(rs)/(R )`

B

`(r )/(sR)`

C

`(R )/(rs)`

D

`(Rs)/(r )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( A \cos B \cos C + B \cos C \cos A + C \cos A \cos B \) in terms of the inradius \( r \), semi-perimeter \( s \), and circumradius \( R \) of triangle \( ABC \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ A \cos B \cos C + B \cos C \cos A + C \cos A \cos B \] ### Step 2: Use Trigonometric Relationships From the triangle, we can express \( B \) in terms of \( A \) and \( C \) using the cosine rule. We know that: \[ B = C \cos A + A \cos C \] ### Step 3: Factor Out Common Terms We can factor out \( \cos B \) from the first and third terms: \[ = \cos B (A \cos C + C \cos A) + B \cos C \cos A \] ### Step 4: Substitute for \( A \cos C + C \cos A \) Substituting \( A \cos C + C \cos A \) with \( b \): \[ = B \cos B + b \cos C \cos A \] ### Step 5: Use the Sine Rule Using the sine rule, we know: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] From this, we can express \( B \) in terms of \( R \): \[ B = 2R \sin B \] ### Step 6: Substitute Back into the Expression Substituting \( B \) into our expression gives: \[ = 2R \sin B \cos B + b \cos C \cos A \] ### Step 7: Use Area of Triangle Recall that the area \( \Delta \) of triangle \( ABC \) can be expressed as: \[ \Delta = R \cdot \frac{a \cdot b \cdot c}{4R} \] Thus, we can relate the area to \( R \) and the sines: \[ \Delta = R^2 \sin A \sin B \sin C \] ### Step 8: Relate Area to Inradius and Semi-perimeter We also know that: \[ \Delta = r \cdot s \] where \( s \) is the semi-perimeter of the triangle. ### Step 9: Final Expression Combining the results, we find: \[ A \cos B \cos C + B \cos C \cos A + C \cos A \cos B = \frac{rs}{R} \] ### Conclusion The final result of the expression \( A \cos B \cos C + B \cos C \cos A + C \cos A \cos B \) is: \[ \frac{rs}{R} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC the expression a cosB cosC+b cosA cosB equals to :

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

(1-cosA)/(sinA) is equal to ?

In a triangle ABC cosA+cosB+cosC<=k then k=

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C

In a triangle ABC, the value of cosA/sinBsinC ​ + cosB/sinCsinA ​ + cosC/sinAsinB ​

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

In any A B C ,2(bc cosA+ ca cosB+ab cosC) =