Home
Class 12
MATHS
In DeltaABC, tanA=2, tanB=(3)/(2) and c=...

In `DeltaABC, tanA=2, tanB=(3)/(2) and c=sqrt(65)`, then circumradius of the triangle is : (a) 65 (b) `(65)/(7)` (c) `(65)/(14)` (d) none of these

A

65

B

`(65)/(7)`

C

`(65)/(14)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the circumradius \( R \) of triangle \( ABC \) given \( \tan A = 2 \), \( \tan B = \frac{3}{2} \), and \( c = \sqrt{65} \), we can follow these steps: ### Step 1: Find \( \tan C \) Using the formula for the tangent of the sum of two angles: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Substituting the values: \[ \tan A = 2, \quad \tan B = \frac{3}{2} \] \[ \tan(A + B) = \frac{2 + \frac{3}{2}}{1 - 2 \cdot \frac{3}{2}} = \frac{\frac{4}{2} + \frac{3}{2}}{1 - 3} = \frac{\frac{7}{2}}{-2} = -\frac{7}{4} \] Thus, we have: \[ \tan C = -\tan(A + B) = \frac{7}{4} \] ### Step 2: Find \( \cot C \) Using the relationship between tangent and cotangent: \[ \cot C = \frac{1}{\tan C} = \frac{4}{7} \] ### Step 3: Find \( \csc^2 C \) Using the identity: \[ 1 + \cot^2 C = \csc^2 C \] Substituting \( \cot C \): \[ 1 + \left(\frac{4}{7}\right)^2 = 1 + \frac{16}{49} = \frac{49 + 16}{49} = \frac{65}{49} \] Thus, \[ \csc^2 C = \frac{65}{49} \] ### Step 4: Find \( \csc C \) Taking the square root: \[ \csc C = \sqrt{\frac{65}{49}} = \frac{\sqrt{65}}{7} \] ### Step 5: Find \( \sin C \) Using the relationship: \[ \sin C = \frac{1}{\csc C} = \frac{7}{\sqrt{65}} \] ### Step 6: Use the Extended Sine Rule The extended sine rule states: \[ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{1}{2R} \] We know \( c = \sqrt{65} \) and \( \sin C = \frac{7}{\sqrt{65}} \): \[ \frac{\sin C}{c} = \frac{\frac{7}{\sqrt{65}}}{\sqrt{65}} = \frac{7}{65} \] ### Step 7: Set up the equation for \( R \) From the extended sine rule: \[ \frac{7}{65} = \frac{1}{2R} \] Cross-multiplying gives: \[ 7 \cdot 2R = 65 \implies 14R = 65 \implies R = \frac{65}{14} \] ### Conclusion Thus, the circumradius \( R \) of triangle \( ABC \) is: \[ \boxed{\frac{65}{14}} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if /_A=72^(@) and /_B=65^(@) , find the measure of /_C .

In Fig.89, the value of x is (a) 75 (b) 65 (c) 45 (d) 55

In A B C ,a=5,b=12 ,c=90^0a n dD is a point on A B so that /_B C D=45^0dot Then which of the following is not true? (a) C D=(60sqrt(2))/(17) (b) B D=(65)/(17) (c) A D=(60sqrt(2))/(17) (d) none of these

In a △ ABC if a =26, b= 30 and cos C = 63/65 , then r_(2) =

The whole number n satisfying n+35=101 is (a)65 (b) 67 (c) 64 (d) 66

The sum of first five multiples of 3 is: 45 (b) 65 (c) 75 (d) 90

In Delta ABC, a=5, b=4, c=3. G is the centroid of triangle. If R_(1) be the circum radius of triangle GAB then the value of (a)/(65) R_(1)^(2) must be

In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of tanA ,tanB ,tanC are, respectively (a) 1,2,3 (b) 3,2//3,7//3 (c) 4,1//2 ,3//2 (d) none of these

Find the value of : ((18.5)^(2) - (6.5)^(2))/(18.5 + 6.5)

The standard deviation of first 10 natural numbers is (a) 8.25 (b) 6.5 (c) 3.87 (d) 2.87