Home
Class 12
MATHS
If the sides a, b, c of a triangle ABC a...

If the sides a, b, c of a triangle ABC are the roots of the equation `x^(3)-13x^(2)+54x-72=0`, then the value of `(cosA)/(a)+(cosB)/(b)+(cosC)/(c )` is equal to :

A

`(61)/(144)`

B

`(61)/(72)`

C

`(169)/(144)`

D

`(59)/(144)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\) where \(a\), \(b\), and \(c\) are the roots of the polynomial equation \(x^3 - 13x^2 + 54x - 72 = 0\). ### Step 1: Find the roots of the polynomial We start with the polynomial equation: \[ x^3 - 13x^2 + 54x - 72 = 0 \] We can use the Rational Root Theorem to test possible rational roots. Let's test \(x = 3\): \[ 3^3 - 13(3^2) + 54(3) - 72 = 27 - 117 + 162 - 72 = 0 \] Thus, \(x = 3\) is a root. ### Step 2: Factor the polynomial Now we will perform synthetic division of the polynomial by \(x - 3\): \[ \begin{array}{r|rrrr} 3 & 1 & -13 & 54 & -72 \\ & & 3 & -30 & 72 \\ \hline & 1 & -10 & 24 & 0 \\ \end{array} \] This gives us: \[ x^3 - 13x^2 + 54x - 72 = (x - 3)(x^2 - 10x + 24) \] Next, we need to factor \(x^2 - 10x + 24\): \[ x^2 - 10x + 24 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 24}}{2 \cdot 1} = \frac{10 \pm \sqrt{100 - 96}}{2} = \frac{10 \pm 2}{2} \] So the roots are: \[ x = 6 \quad \text{and} \quad x = 4 \] ### Step 3: Identify the sides of the triangle Thus, the roots of the polynomial are: \[ a = 3, \quad b = 6, \quad c = 4 \] ### Step 4: Calculate \(\cos A\), \(\cos B\), and \(\cos C\) Using the cosine rule: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Calculating each: 1. For \(\cos A\): \[ \cos A = \frac{6^2 + 4^2 - 3^2}{2 \cdot 6 \cdot 4} = \frac{36 + 16 - 9}{48} = \frac{43}{48} \] 2. For \(\cos B\): \[ \cos B = \frac{3^2 + 4^2 - 6^2}{2 \cdot 3 \cdot 4} = \frac{9 + 16 - 36}{24} = \frac{-11}{24} \] 3. For \(\cos C\): \[ \cos C = \frac{3^2 + 6^2 - 4^2}{2 \cdot 3 \cdot 6} = \frac{9 + 36 - 16}{36} = \frac{29}{36} \] ### Step 5: Calculate \(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\) Now we substitute the values: \[ \frac{\cos A}{a} = \frac{43/48}{3} = \frac{43}{144}, \quad \frac{\cos B}{b} = \frac{-11/24}{6} = \frac{-11}{144}, \quad \frac{\cos C}{c} = \frac{29/36}{4} = \frac{29}{144} \] Adding these together: \[ \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{43}{144} - \frac{11}{144} + \frac{29}{144} = \frac{43 - 11 + 29}{144} = \frac{61}{144} \] ### Final Answer Thus, the value of \(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\) is: \[ \boxed{\frac{61}{144}} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

If the sines of the angle A and B of a triangle ABC satisfy the equation c^(2) x^(2) - c (a + b) x + ab = 0 , then the triangle

In a Delta A B C , if sinAa n dsinB are the roots of the equation c^2x^2-c(a+b)x+a b=0, then find /_Cdot

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal, then prove that 2b=a+c

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

In a triangle ABC the sides b and c are the roots of the equation x^2-61x+820=0 and A=tan^-1(4/3) then a^2+3 is equal to

(a+b+c)(cosA+cosB+cosC)

If sin theta and - cos theta are the roots of the equation ax^2-bx-c=0 where a, b and c the side of a triangle ABC , then cos B is equal to :-

If sin theta and -cos theta are the roots of the equation ax^(2) - bx - c = 0 , where a, b, and c are the sides of a triangle ABC, then cos B is equal to