Home
Class 12
MATHS
In a DeltaABC if b =a (sqrt3-1) and /C ...

In a `DeltaABC` if `b =a (sqrt3-1) and /_C =30^@` then the measure of the angle A is

A

`15^(@)`

B

`45^(@)`

C

`75^(@)`

D

`105^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given information and apply the sine rule to find the measure of angle A in triangle ABC. ### Step-by-Step Solution: 1. **Given Information:** - \( b = a(\sqrt{3} - 1) \) - \( \angle C = 30^\circ \) 2. **Express \( \frac{a}{b} \):** \[ \frac{a}{b} = \frac{1}{\sqrt{3} - 1} \] 3. **Rationalize the Denominator:** To rationalize \( \frac{1}{\sqrt{3} - 1} \), multiply the numerator and denominator by \( \sqrt{3} + 1 \): \[ \frac{1}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{\sqrt{3} + 1}{(\sqrt{3})^2 - (1)^2} = \frac{\sqrt{3} + 1}{3 - 1} = \frac{\sqrt{3} + 1}{2} \] Thus, \[ \frac{a}{b} = \frac{\sqrt{3} + 1}{2} \] 4. **Using the Sine Rule:** According to the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] From the first two parts, we have: \[ \frac{a}{b} = \frac{\sin A}{\sin B} \] Substituting the value of \( \frac{a}{b} \): \[ \frac{\sin A}{\sin B} = \frac{\sqrt{3} + 1}{2} \] 5. **Finding \( \sin B \):** Since \( \angle C = 30^\circ \), we can find \( \sin C \): \[ \sin C = \sin 30^\circ = \frac{1}{2} \] Now, we also know that: \[ \frac{b}{\sin B} = \frac{a}{\sin A} \] Therefore, we can express \( \sin B \) in terms of \( a \) and \( b \): \[ \sin B = \frac{b \cdot \sin A}{a} \] 6. **Substituting \( b = a(\sqrt{3} - 1) \):** \[ \sin B = \frac{a(\sqrt{3} - 1) \cdot \sin A}{a} = (\sqrt{3} - 1) \cdot \sin A \] 7. **Substituting into the Sine Rule:** Now we can substitute \( \sin B \) back into the equation: \[ \frac{\sin A}{(\sqrt{3} - 1) \cdot \sin A} = \frac{\sqrt{3} + 1}{2} \] Simplifying gives: \[ \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{2} \] 8. **Finding \( \angle B \):** From the sine rule, we can find \( \sin B \): \[ \sin B = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad B = 45^\circ \] 9. **Finding \( \angle A \):** Now we can find \( \angle A \): \[ \angle A = 180^\circ - \angle B - \angle C = 180^\circ - 45^\circ - 30^\circ = 105^\circ \] ### Final Answer: The measure of angle A is \( 105^\circ \).
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

If b=sqrt(3), c=1 and angleA=30^(@) , then the measure of angleB is

In a DeltaABC , if b =(sqrt3-1) a and angle C=30^(@), then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

In a DeltaABC , if /_A=72^(@) and /_B=65^(@) , find the measure of /_C .

In a DeltaABC , if a = 40, c=40sqrt(3) and B=30^(@) , then the triangle is

In a DeltaABC , if a 100, c = 100 sqrt(2) and A=30^(@) , then B equals to

If a=1+sqrt(3), b=2 and c=sqrt(2) , then the measure of angleB is

If in a Delta ABC, b =sqrt3, c=1 and B-C =90^(@), then angle A is

In a DeltaABC , if A=120^(@), b=2 and C=30^(@) , then a=

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=