Home
Class 12
MATHS
If a ne b ne c are all positive, then th...

If `a ne b ne c` are all positive, then the value of the determinant `|{:(a,b,c),(b,c,a),(c,a,b):}|`is

A

`ge 0`

B

`gt 0`

C

`le -1`

D

`lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] where \( a \neq b \neq c \) and all are positive, we will follow these steps: ### Step 1: Write the determinant We start by writing the determinant explicitly: \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 2: Expand the determinant Using the rule of Sarrus or cofactor expansion, we can expand the determinant: \[ D = a \begin{vmatrix} c & a \\ a & b \end{vmatrix} - b \begin{vmatrix} b & a \\ c & b \end{vmatrix} + c \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2\) 2. \(\begin{vmatrix} b & a \\ c & b \end{vmatrix} = bb - ac = b^2 - ac\) 3. \(\begin{vmatrix} b & c \\ c & a \end{vmatrix} = ba - c^2\) Substituting these back into the determinant: \[ D = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) \] ### Step 3: Simplify the expression Expanding this gives: \[ D = acb - a^3 - b^3 + abc + abc - c^3 \] Combining like terms: \[ D = 3abc - (a^3 + b^3 + c^3) \] ### Step 4: Factor the expression We can use the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Thus, we can rewrite \(D\) as: \[ D = -(a^3 + b^3 + c^3 - 3abc) = -\left((a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc)\right) \] ### Step 5: Analyze the signs Since \(a\), \(b\), and \(c\) are all positive and distinct, both \(a + b + c\) and \(a^2 + b^2 + c^2 - ab - ac - bc\) are positive. Therefore, the product is positive, and since we have a negative sign in front, we conclude: \[ D < 0 \] ### Conclusion Thus, the value of the determinant is negative: \[ D < 0 \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

The value of the determinant |[a-b,b+c,a],[b-c,c+a,b],[c-a,a+b,c]| is

The value of the determinant |(b +c,a -b,a),(c +a,b -c,b),(a +b,c -a,c)| , is

Write the value of the following determinant |(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|

Write the value of the determinant |[a,1,b+c], [b,1,c+a] ,[c,1,a+b]| .

Let a ,b ,c be positive and not all equal. Show that the value of the determinant |[a, b, c],[b, c, a],[ c, a ,b]| is negative.

If a, b, c are positive and unequal, show that value of the determinant Delta=|a b c b c a c a b| is negative.

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

If a ne b ne c , then solution of equation |{:(x-a,x-b,x-c),(x-b,x-c,x-a),(x-c, x-a,x-b):}|=0" "is:

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is