Home
Class 12
MATHS
In any triangle ABC, the value of (r(1)+...

In any triangle ABC, the value of `(r_(1)+r_(2))/(1+cosC)` is equal to (where notation have their usual meaning) :

A

2R

B

2r

C

R

D

`(2R^(2))/(r )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((r_1 + r_2) / (1 + \cos C)\) in triangle \(ABC\), where \(r_1\) and \(r_2\) are the ex-radii of the triangle. Let's go through the steps systematically. ### Step 1: Write the formulas for \(r_1\) and \(r_2\) The ex-radii \(r_1\) and \(r_2\) are given by the following formulas: \[ r_1 = \frac{4R \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right)}{1} \] \[ r_2 = \frac{4R \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \cdot \cos\left(\frac{A}{2}\right)}{1} \] ### Step 2: Write the expression for \(1 + \cos C\) Using the half-angle formula, we can express \(1 + \cos C\) as: \[ 1 + \cos C = 1 + 2\cos^2\left(\frac{C}{2}\right) - 1 = 2\cos^2\left(\frac{C}{2}\right) \] ### Step 3: Substitute \(r_1\) and \(r_2\) into the expression Now, we can substitute \(r_1\) and \(r_2\) into the expression \(\frac{r_1 + r_2}{1 + \cos C}\): \[ \frac{r_1 + r_2}{1 + \cos C} = \frac{4R \left( \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right) + \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \cdot \cos\left(\frac{A}{2}\right) \right)}{2\cos^2\left(\frac{C}{2}\right)} \] ### Step 4: Simplify the expression Factor out common terms: \[ = \frac{2R \left( 2\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right) + 2\sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \cdot \cos\left(\frac{A}{2}\right) \right)}{\cos^2\left(\frac{C}{2}\right)} \] ### Step 5: Use the sine addition formula Using the sine addition formula: \[ \sin\left(\frac{A + B}{2}\right) = \sin\left(\frac{A}{2}\right) \cdot \cos\left(\frac{B}{2}\right) + \cos\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \] We can express the numerator in terms of \(\sin\left(\frac{A + B}{2}\right)\): \[ = \frac{2R \cdot \sin\left(\frac{A + B}{2}\right)}{\cos^2\left(\frac{C}{2}\right)} \] ### Step 6: Substitute \(A + B = \pi - C\) Since \(A + B + C = \pi\), we have \(A + B = \pi - C\): \[ = \frac{2R \cdot \sin\left(\frac{\pi - C}{2}\right)}{\cos^2\left(\frac{C}{2}\right)} \] Using the identity \(\sin\left(\frac{\pi - C}{2}\right) = \cos\left(\frac{C}{2}\right)\): \[ = \frac{2R \cdot \cos\left(\frac{C}{2}\right)}{\cos^2\left(\frac{C}{2}\right)} = 2R \] ### Final Answer Thus, the value of \(\frac{r_1 + r_2}{1 + \cos C}\) is: \[ \boxed{2R} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In any triangle, the minimum value of r_(1) r_(2) r_(3) //r^(3) is equal to

In any triangle ABC, find the least value of (r_(1) + r_(2) + r_(3))/(r)

In a triangle ABC if a, b, c are in A.P. and C-A=120^(@) , then (s)/(r )= (where notations have their usual meaning)

In triangle ABC, if r_(1) = 2r_(2) = 3r_(3) , then a : b is equal to

In a triangle ABC , if 2R + r = r_(1) , then

In triangle ABC, of r_(1)= 2r_(2)=3r_(3) Then a:b is equal :-

Prove that (r_1+r_2)/(1+cosC)=2R

In a triangle ABC , if r_(1) =2r_(2) =3r_(3) , then a:b:c =

In triangle ABC,angleA=pi/2b=4,c=3 ,then the value of R/r is equal to

For Delta ABC, if 81 + 144 a ^(4) + 16b ^(4) + 9c ^(4) =144 abc, (where notations have their usual meaning), then :