Home
Class 12
MATHS
The sides of the triangle are sinalpha ,...

The sides of the triangle are sin`alpha` , cos`alpha` and `sqrt(1+sinalphacosalpha)` for some `0 lt alpha lt (pi)/2`. Then the greatest angle of the triangle is

A

`(pi)/(3)`

B

`(pi)/(2)`

C

`(2pi)/(3)`

D

`(5pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest angle of the triangle with sides \( a = \sin \alpha \), \( b = \cos \alpha \), and \( c = \sqrt{1 + \sin \alpha \cos \alpha} \), we can follow these steps: ### Step 1: Identify the sides of the triangle Let: - \( a = \sin \alpha \) - \( b = \cos \alpha \) - \( c = \sqrt{1 + \sin \alpha \cos \alpha} \) ### Step 2: Use the cosine rule to find the angle opposite to side \( c \) The cosine rule states that for any triangle with sides \( a, b, c \) opposite to angles \( A, B, C \) respectively: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] ### Step 3: Substitute the values of \( a, b, c \) into the cosine rule Substituting \( a, b, c \): \[ \cos C = \frac{(\sin \alpha)^2 + (\cos \alpha)^2 - (\sqrt{1 + \sin \alpha \cos \alpha})^2}{2(\sin \alpha)(\cos \alpha)} \] ### Step 4: Simplify the expression Using the Pythagorean identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \cos C = \frac{1 - (1 + \sin \alpha \cos \alpha)}{2 \sin \alpha \cos \alpha} \] This simplifies to: \[ \cos C = \frac{1 - 1 - \sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha} = \frac{-\sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha} \] ### Step 5: Further simplification This gives: \[ \cos C = -\frac{1}{2} \] ### Step 6: Find the angle \( C \) The angle \( C \) corresponding to \( \cos C = -\frac{1}{2} \) is: \[ C = 120^\circ \] ### Step 7: Determine the greatest angle of the triangle Since \( C \) is the angle opposite the longest side \( c \), it is the greatest angle of the triangle. Thus, the greatest angle of the triangle is: \[ \boxed{120^\circ} \] ---
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt beta lt (pi)/(2) then

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If Delta_(1) is the area of the triangle with vertices (0, 0), (a tan alpha, b cot alpha), (a sin alpha, b cos alpha), Delta_(2) is the area of the triangle with vertices (a sec^(2) alpha, b cos ec^(2) alpha), (a + a sin^(2)alpha, b + b cos^(2)alpha) and Delta_(3) is the area of the triangle with vertices (0,0), (a tan alpha, -b cot alpha), (a sin alpha, b cos alpha) . Show that there is no value of alpha for which Delta_(1), Delta_(2) and Delta_(3) are in GP.

Solve : tan ^(2) alpha + sec alpha - 1 = 0,0 le alpha lt 2pi.

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

If 0 lt alpha lt pi/2 then show that tanalpha+cotalphagtsinalpha+cosalpha

The lengths of the sides of a triangle are alpha-beta, alpha+beta and sqrt(3alpha^2+beta^2), (alpha>beta>0) . Its largest angle is

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is