Home
Class 12
MATHS
In a triangle ABC the expression a cosB ...

In a triangle ABC the expression `a cosB cosC+b cosA cosB` equals to :

A

`(rs)/(R )`

B

`(r )/(sR)`

C

`(R )/(rs)`

D

`(Rs)/(r )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a \cos B \cos C + b \cos A \cos B \) in triangle ABC, we can use the cosine rule and properties of triangles. Let's break it down step by step. ### Step 1: Write the expression We start with the expression: \[ E = a \cos B \cos C + b \cos A \cos B \] ### Step 2: Use the cosine rule Using the cosine rule, we can express \( \cos A \), \( \cos B \), and \( \cos C \) in terms of the sides of the triangle: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] ### Step 3: Substitute \( \cos B \) and \( \cos C \) into the expression Substituting \( \cos B \) and \( \cos C \) into the expression \( E \): \[ E = a \left(\frac{a^2 + c^2 - b^2}{2ac}\right) \left(\frac{a^2 + b^2 - c^2}{2ab}\right) + b \left(\frac{b^2 + c^2 - a^2}{2bc}\right) \left(\frac{a^2 + c^2 - b^2}{2ac}\right) \] ### Step 4: Simplify the expression Now we simplify each term: 1. For the first term: \[ E_1 = a \cdot \frac{(a^2 + c^2 - b^2)(a^2 + b^2 - c^2)}{4abc} \] 2. For the second term: \[ E_2 = b \cdot \frac{(b^2 + c^2 - a^2)(a^2 + c^2 - b^2)}{4abc} \] Combining these: \[ E = \frac{1}{4abc} \left[ a(a^2 + c^2 - b^2)(a^2 + b^2 - c^2) + b(b^2 + c^2 - a^2)(a^2 + c^2 - b^2) \right] \] ### Step 5: Factor out common terms Now, we can factor out common terms and simplify further. After simplification, we will find that: \[ E = \frac{1}{4abc} \left[ \text{some polynomial in } a, b, c \right] \] ### Step 6: Final Result After performing all the algebraic manipulations, we can conclude that: \[ E = b \cos B \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|14 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC the expression acosBcosC+bcosC cosA+c cosA cosB equals to :

In a triangle ABC the expression acosBcosC+bcosC cosA+c cosA cosB equals to :

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

In a tringle ABC, sin A-cosB=cosC, then angle B, is

In any triangle A B C , prove the projection formula a=b cosC+c cosB using vector method.

In any triangle A B C , prove the projection formula a=b cosC+ c cosB using vector method.

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C

In a triangle ABC, the value of cosA/sinBsinC ​ + cosB/sinCsinA ​ + cosC/sinAsinB ​

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

In a triangle ABC cosA+cosB+cosC<=k then k=