Home
Class 12
MATHS
if ABC is a triangle and tan(A/2), tan(B...

if ABC is a triangle and `tan(A/2), tan(B/2), tan(C/2)` are in H.P. Then find the minimum value of `cot(B/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \( \cot\left(\frac{B}{2}\right) \) given that \( \tan\left(\frac{A}{2}\right), \tan\left(\frac{B}{2}\right), \tan\left(\frac{C}{2}\right) \) are in Harmonic Progression (H.P.). ### Step-by-Step Solution: 1. **Understanding the relationship between H.P. and A.P.:** Since \( \tan\left(\frac{A}{2}\right), \tan\left(\frac{B}{2}\right), \tan\left(\frac{C}{2}\right) \) are in H.P., their reciprocals \( \cot\left(\frac{A}{2}\right), \cot\left(\frac{B}{2}\right), \cot\left(\frac{C}{2}\right) \) are in Arithmetic Progression (A.P.). \[ 2 \cot\left(\frac{B}{2}\right) = \cot\left(\frac{A}{2}\right) + \cot\left(\frac{C}{2}\right) \] 2. **Using the property of angles in a triangle:** Since \( A + B + C = 180^\circ \), we can express \( C \) in terms of \( A \) and \( B \): \[ C = 180^\circ - A - B \] 3. **Applying the cotangent addition formula:** We know that: \[ \cot\left(\frac{C}{2}\right) = \cot\left(90^\circ - \frac{A + B}{2}\right) = \tan\left(\frac{A + B}{2}\right) \] 4. **Using the cotangent identity:** From the cotangent addition formula: \[ \cot\left(\frac{A + B}{2}\right) = \frac{\cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) - 1}{\cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right)} \] 5. **Substituting back into the A.P. condition:** We substitute \( \cot\left(\frac{C}{2}\right) \) into the A.P. condition: \[ 2 \cot\left(\frac{B}{2}\right) = \cot\left(\frac{A}{2}\right) + \tan\left(\frac{A + B}{2}\right) \] 6. **Finding the minimum value:** By applying the inequality of arithmetic and geometric means, we can derive: \[ \cot\left(\frac{A}{2}\right) + \cot\left(\frac{C}{2}\right) \geq 2\sqrt{\cot\left(\frac{A}{2}\right) \cot\left(\frac{C}{2}\right)} \] Thus, we can conclude that: \[ \cot\left(\frac{B}{2}\right) \geq \sqrt{3} \] 7. **Final result:** Therefore, the minimum value of \( \cot\left(\frac{B}{2}\right) \) is: \[ \boxed{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(A/2)*cot(C/2)

. In a DeltaABC, If tan (A/2) , tan(B/2), tan (C/2) , are in H.P.,then a,b,c are in

In a Delta ABC tan ""A/2, tan ""B/2, tan ""C/2 are in H.P., then the vlaue iof cot ""A/2 cot ""C/2 is :

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

If in the triangle ABC, "tan"(A)/(2), "tan"(B)/(2) and "tan"(C )/(2) are in harmonic progression then the least value of "cot"^(2)(B)/(2) is equal to :