Home
Class 12
MATHS
If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)...

If `2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(63)/(lambda`, then `lambda=`

Text Solution

Verified by Experts

The correct Answer is:
65
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(9lambda)/(65) , then lambda=

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Sometimes we are just concerned with finding integral solutions to equations. Consider the equation tan^(-1).(1)/m+tan^(-1).(1)/n=tan^(-1).(1)/lambda , where m,n, lambda in N If lambda is such that lambda^2=1 is a prime, then how many solutions (m,n) are there for the equation?

Prove that : tan^(-1)(63/16)=sin^(-1)\(5/13)+cos^(-1)(3/5)